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ABSTRACT 

A plane-stress analysis is presented for an edge-stiffened 

isotropic or,orthotropic elastic rectangular plate subjected to 

prescribed loads,and prescribed temperature distributions. 

Along one or more.of the edges the stiffeners are assumed to 

rig5dly maintain a prescribed shape.(e.g., straight), while the 

stiffeners along the remaining edges are assumed to have 

negligible flexural stiffness. All four stiffeners are assumed 

to be uniform and to possess finite axial stiffness. The plate 

edges are assumed to be integrally attached to the stiffeners 

along the originally straight centroidal axes of the stiffeners. 

This work represents a generalization of earlier studies in 

which only boundary loadings (rather than boundary displacements) 

were prescribed. 

The analysis is by means of Fourier series. Numerical 

results are presented for the specific cases of an isotropic 

square stiffened plate with one edge, two opposite edges, or all 

four edges held straight. In all three of these cases the plate 

was assumed to have a pillow-shaped temperature distribution. 

In the second case stretching forces parallel to the non-straight 

edges were also considered. 
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INTRODUCTION 

In reference .l a plane-streqs analysis, by means -of Fourier series, 

was presented for an elastic rectangular plate with four edge stiffeners, 

subjected to any equilibrium system of boundary loads,and any prescribed 

temperature distribution. The plate was assumed to be isotropic or ortho- 

tropic, with elastic constants independent of position, and, if ortho- 

tropic, with axes of elastic symmetry parallel to its edges. The 

stiffeners were assumed to have finite extensional stiffness but negligible 

bending stiffness, and the attachment between plate edge and adjoining 

stiffener was assumed to be along the originally straight centroidal axis 

of the stiffener. The stiffeners were assumed to be either uniform in 

cross section or tapered in such a way as to result in any prescribed 

variation of stiffener cross-sectional stress along the length of stif- 

feners. This structure is shown schematically in figure 1. 

In this earlier work, just described, the boundary conditions 

were entirely those of firescribed normal and shearing loadings along the 

outer periphery of the stiffeners. The purpose of the present paper is 

to generalize this previous work by assuming that along one or more edges 

the boundary condition of prescribed normal loading is replaced by one 

of prescribed normal displacement - i.e. along one or more of the edges 

the stiffener is assumed to be rigidly held in a prescribed shape. We 

can imagine that such a stiffener has been endowed with infinite flexural 

stiffness after being bent to its prescribed shape, while its axial 
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stiffness remains finite. Along such an edge, one may still prescribe a 

distribution of .external normal,forces .along the stiffener, .but only the 

resultant‘forceT ,and moment M of this ,distribution are significant .' since 

the stiffener shape has been assumed to.be rigidly fixed. On the remain- 

ing edges the boundary conditions continue to be those,of prescribed no'imal 

and shear loading applied to perfectly flexible stiffeners. Only the case of 

constant - .area stiffeners is considered. 

By this generalization the range of applicability of the analysis is 

widened.to include cases in which, for example, certain edges of the plate 

are forced to remain straight. As an illustration, one can cite an interior 

bay of an airplane shear web, bounded by spar caps along two opposite edges 

(the top and bottom) and upright along the other two edges. Continuity of 

the plate across the uprights suggests that when the adjacent bays are 

identical to the one under consideration and similarly heated or loaded 

the plate edges along the uprights will tend to remain straight. Tllus 

such a bay would correspond to an edge-stiffened rectangular plate with 

two opposite edges kept straight. Similarly, an interior skin panel of a 

multi-spar multi-rib wing could correspond to the case-of all four edges 

held straight. 

The most general results of the present analysis are in the form of 

equations for stresses .in the case of shape, resultant external normal 

force, and resultant external moment prescribed along (a) one edge, 

(b) two opposite edges, and (c) all four edges. The use of these equa- 

tions is described in detail. In addition, numerical examples are given 
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corresponding to each of. these cases. These numerical examples are for 

doubly symmetric square plates with one edge, two opposite edges, or all 

four edges held straight, and, for the most part, a prescribed "piilow- 

shaped" temperature distribution, i.e. a temperature distribution in which . 

the stiffener temperatures are constant at one value and the plate experi- 

ences a temperature rise, relating to the stiffeners, which varies as a 

halfsine wave,in both directions across the plate. For the case of two 

opposite edges held straight on overall tension loading is also considered 

which stretches the plate in the direction of the unconstrained edges, 

while the constrained edges remain straight and parallel to each other 

but move apart. 

For the sake of sim@licity, the term "temperature distribution" has 

been and will often again be used in this paper. It should be understood, 

however, that what is meant is a distribution of temperature rise with 

respect to some datum temperature distribution at which the structure is 

assumed to be stress-free in the absence of applied loads. Usually, the 

datum temperature distribution is a uniform one, and then it becomes cor- 

rect to speak of thermal stresses due to a temperature distribution rather 

than to a temperature-rise distribution. 

The structure, loading, boundary conditions, and results are described 

in more detail in the following sections. The symbols are defined where 

they are first used, and the definitions are also compiled in appendix A for 

convenience of reference. Those details of the analysis not essential for 

the understanding and use of the results are given in appendixes B through E. 
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DETAILED DESCRIPTION OF STRUCTURE 

Geometry and Coordinate System 

The combination of the plate and edge stiffeners is as shown 

schematically in figure 1. The plate has a length a and a width b. 

The position of any point in the plate is given by its coordinates x 

and y in a Cartesian coordinate system whose origin is at a comer 

of the plate and whose axes coincide with two adjacent edges, as shown 

in the figure. The cross-sectional areas of the stiffeners are denoted 

by Al, A2, A3 and A4 for the stiffeners located at x = 0, x = a, y = 0 

and Y = b, respectively. In the analysis the stiffener axes are assumed 

to coincide with the plate edges, but in figure 1 the stiffener axes are 

shown slightly offset from the plate edges for clarity. 

Thermal Strains 

We assume that a datum temperature distribution exists for which 

the unloaded structure is free of internal stress. When the structure 

is in this datum condition the strains will be considered zero. For any 

other temperature distribution, those strains that would be produced if 

the thermal expansions of every infinitesimal element were permitted to 

occur without restraint from neighboring elements will be called the 

"thermal strains." The temperature distribution and coefficients of 

expansion are assumed to be known throughout the stiffeners and plate, 

hence the thermal strains are assumed to be everywhere known. 
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The notation for thermal strains is indicated in figure 2 and is 

as follows: e,(y) s e2 (y) s e (x) and e 3 4 (x).are the thermal strains in 

the stiffeners located at x = 0, x = a, y = 0 and y = bb respectively; 

e,(x,y) and ey(x,y) are the thermal strains in the plate in x and y 

directions, respectively. The strains are positive for elongation. 

Because the analysis allows for an orthotropic plate, ex and e need Y 
not equal, but since the x and y axes are parallel to the directions of 

elastic symmetry, there is no thermal shear strain e 
XY' 

Stress-Strain Relationships and Elastic Constants 

The notation for the internal forces is indicated in figure 3. 

P,(y), P2(y), P3(x), P,(x) denote the cross-sectional tensions and 

El(Y)’ E2(Y)' E3(X), Ed the total strains (thermal plus elastic) 

in the stiffeners located at x = 0, x = a, y = 0, y = b, respectively. 

The plate stress resultants (force per unit length) are represented by 

Nx(x,yD and Ny(x,y) for normal stress and N ,,(X,Y) f or shear stress, 

as shown in figure 3. The corresponding total strains are symbolized 

by E~(x,Y), E~(x,Y) and Y,~(x,Y)- . 

In terms of this notation, the assumed stress-strain relations 

for the stiffeners are 

pi 
Ei = ei + AiEi (i = 1,2,3,4) (1) 

with Young's moduli El and E2 independent of y, E3 and E4 independent 

of x. The stress-strain relations of the plate are taken as: 

5 



e - ex.+. CINx - ,C N 
X 3.Y 

BY = "Y + c N -'c3Nx 2Y @I- 

Y XY = %EJxJr 

where the .elastic constants Cl, C2, C3 and C4 are,independent of x.and y. 

If the plate is homogeneous.and isotropic, with thickness h, Young's 

modulus E, and Poisson's ratio v then 

Cl = C2 = (Eh) 11 

c3 = v(Eh)-' (3) 

c4 = 2(1+v)(Eh)-' 

The assumption that the elastic constants are independent of spatial 

coordinates also implies the assumption that they are independent of 

temperature. 

Boundary Conditions 

Figure 1 shows the boundary conditions.pureiy of prescribed 

loading which were employed inreference 1. This loading consists of 

end forces P 1 (O), P 1 (b) etc. applied to the centroids of the end cross 

sections of the stiffeners, and distributed external shear flows 

ql(y), q2(y), q3(x), q4(x) and distributed external normal forces 



N1(y), N2.(y), N3(x), N4(x) applied to the stiffeners. The.distributed 

loadings have the dimensions.of force per unit length.- The shear flows 

are assumed to be,acting along the centroidal sxes of the stiffeners, 

although for clarity they are shown displaced from these sxes in 

figure 1. Because the.edge.stiffeners have,zero bending stiffness, the, 

normal force is transmitted directly through them into the edge.of the 

plate< 

In the present paper the boundary condition of,prescribed normal- 

force distribution is-replaced by that of prescribed and rigidly main- 

tained stiffener shape and prescribed external normal-force resultants 

along one edge, the opposite edges, or all four edges. (Along the re- 

maining edges two stiffeners are still assumed to.be perfectly flexible.) 

These cases are shown schematically in figure 4, in which the cross-hatched 

stiffeners are those whose shapes are rigidly prescribed. T1 through T4 

are the prescribed external normal force resultants, and M 1 through M 
4 

the prescribed external moment resultants, acting on these stiffeners. 

Letting u(x,y> and v(x,y> denote,the displacement components in the x and 

y directions, respectively, we can describe the boundary condition of 

prescribed shape mathematically as follows for case (a) of figure 4: 

is a prescribed function of y. 
x=0 

Similarly, the shape boundary conditions for case (b) are: 

and ($1 are prescribed functions of y. 
x=0 x=a 

And those for case (c) are: 
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and ($1 are prescribed functions of y ; 
x=0 x=a 

and ($1 are prescribed functions aof x. 
3-0 y-b 

Note.that the prescribed shape of an edge,is described by means of its 

curvatures. If an edge is held straight the prescribed curvatures are 

zero. 

The boundary condition of prescribed shape along an edge can be 

achieved, hypothetically, by forcibly bending the edge stiffener (in 

its attached condition) to the prescribed curvatures, and then endowing 

itwith infinite flexural stiffness while its axial stiffness remains 

finite. If the now flexurally-rigid stiffener is free of all external 

forces, the values of T and M shown in figure 4 for that stiffener became 

zero; the system of.intemal normal forces acting between that stiffener 

and rest of the structure will then constitute a self-equilibrating 

system, and a mathematical statement to that effect must be included in 

the analysis as a boundary condition. On the other hand, if the stiffener 

is not completely free of external force then the internal normal .forces 

along the edge of the stiffenerplus the external T and M applied to 

that stiffener must together be self-equilibrating. 

Of course, the total system of external forces must at the outset 

constitute an equilibrium system. 
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Comer Conditions 

The stiffeners will be assumed to be.hinged where they meet at 

the comers. This assmption is really superfluous in the case.of figure 

4a or 4b, for in these cases one of the two stiffeners meeting at every 

comer is a perfectly flexible one, incapable of developing any bending 

moment. The assumption is.significant only in the case of 4c, where 

at each comer two rigid stiffeners meet. 

If the loading and temperature distribution for the case of 

figure 4c are such that there is no tendency for the stiffeners to undergo 

relative rotation at the comers (as was true in the numerical examples 

considered in this paper), then, of course, the plate stresses and stif- 

fener tensions are the same for rigid joints as for hinged joints. 



FOURIER SERIES EXPANSIONs FOR PRESCRIBED BOUNDARY LOADS, 

PRESCRIBED BOUNDARY CURVATURES, AND PRESCRIBED, 

THERMAL STRAINS' 

The results of the.present analysis, to be discussed shortly,con-' 

sist of formulas for the stiffener and plate stresses in terms of the given 

loading, the given boundary curvatures, and the known thermal strains. How- 

ever, these prescribed quantities do not appear explicitly in these formulas; 

it is rather the Fourier coefficienixof these quantities which are required. 

In anticipation of this requirement it is assumed that the given quantities 

can be expanded as Fourtler series, with known coefficients, in the forms given 

below. 

Prescribed Boundary Loadings 

When the prescribed normal-force distributions N1(y), N2(y), N3(x), 

N4(x) exist, that is when their existence-is not pre-empted by boundary con- 

ditions of prescribed shape, then they will be assumed known in the form of 

the following series: 

N1(y) = 
n=l 

Bi sin y 

N2(y) = 
n=l 

Bi sin y 

N3(x) = “z” B”” sin y 
m=l m 

N4hd - F B;’ sin y 
m=l 

(0 < Y < b) 

(0 < Y < b) 

(0 < X < a) 

(0 < X < a) 

(4) 

10 



where 

b 
B:, - + Ni(Y) sin b EY dyj- etc. 

0 
And the shear flows.w~ll be assumed to be.given in the following form: 

ql(y) - f Q: CO8 y. 
n=O 

q2(y) - i ~cosy 
n=O 

q3(x) - y Q”’ COB y m7rx 
m-0 m 

q4(x) - i q" CO8 y- mnx 
m-0 

where 

2-Q b 
Q:, = 7 

I 
ql(y) cos y dy 1 etc. 

0 

(5) 

‘(6) 

(7) 

and 6 nb is Kronecker's delta. 

When any of'the loadings N1(y), N2(y), N3(x), or N4(x) exists, it 

is transmitted,through the assumedly perfectly‘flexible stiffener,into the 

plate. Thus the corresponding Fourier coefficients BA, B", BA", or B'G 

describe not only the externally applied normal loading but also the internal 

distributed tension Nx(O,y), Nx(ary), Ny(x,O), or Ny(x,b), respectively, 

acting mutually 'between the stiffener and the edge of the plate. 

11 



Finite upper limits M and N are shown for the summation indexes in 

these (and subsequent) series in expectation of the fact that, for practi- 

cal computational reasons, it will normally be necessary to use truncated 

rather than infinite series. 

Prescribed Boundary Curvatures 

When curvatures are prescribed, they will be assumed, to be given 

by one or more of the following series, depending on which edges have the 

prescribed curvatures: 

where 

2 
(&3x=o = i KA sin y (0 < y < b) 

n=l 

i Ki sin y (0 c y < b) 
n=l 

; K”’ sin y (0 < x < a) 
m=l m 

&)y=b = y KL' sin a m7rx (0 < x < a) 
m=l 

If an edge is held straight, then all the coefficients in the Fourier 

(9) 

(10) 

(11) 

(12) 

series expansion for the curvatures along that edge will, of course, be 

zero. 
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Prescribed Thermal Strains 

If there are any discontinuities in thermal strain between the 

stiffeners and the edges of the plate, these will be represented by the 

following Fourier series with known coefficients: 

el (Y) _ e,(o,y) = y TA sin y (0 c y c b) 
n=l 

N 
e,(y) - e,(a,y> = 1 Tl sin y (0 c- y c b) 

n=l 
(13) 

M 
e3 (xl mrrx - ex(x,o) = 1 TL' sin - a (0 cxca) 

m=l 

e4 (xl - ex(x,b) = y Tt' rnnx 
mil 

sin - a (0 c x < a> 

where 
2 tb 

T,: = iy 
J 

[e,(y) - ey!O,y)l sin y , etc. (14) 
0 

The quantity a2ey/ax2 + a2ex/;ay2 is assumed known throughout the 

plate and representable by the following Fourier series in the open 

region 0 c x c a, 0 c y c b: 

a2e a2e M N 
&+-+= : 7 Tmn sin y sin EY 

ay m=l n:l b (15) 

where 

T mn (16) 
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Integration by parts in the above equation gives the following 

alternate form which permits T M1 to be evaluated from the first partial 

derivatives of .ex and e 
Y 

instead of the second partial,derivatives: 

b a 
mn 4 

T =-a 
aey m71x 

mn ab ax cos - sin y dxdy a 
0 0 

n71 4 --- 
b ab 

EY sin m71x 
b a dyb 

0 0 
(17) 

Equation (17) may be used for piecewise continuous e or e with finite 
Y X 

discontinuities provided that aey/ax and aex/ay are regarded to be infi- 

nite in the manner of the Dirac delta function at points of discontinuity. 

If e and e are continuous in the closed region 0 2 x L a, 0 2 y 5 b, 
Y * 

further integration by parts gives 

b 
T rnT 4 =- -- 
Inn a ab I 

[e,(a,y) cm m - e,(o,y)] sin y dy 
0 

b a 

ey(x,y> sin mrx - sin y dxdy a 

a 
n71 4 

-iTab [ex(x,b> cos nr - ex(x,o)] sin 7 dx 
0 

a b 

i i 
ex(x,y> sin y sin y dydx 

0 0 
(18) 

Finally, the known quantities (aey/ax)x=O, etc. are assumed to be 

expandable in the following Fourier series: 
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(0 < y < b) 

V: siny (0 < y c b) 
n=l 

(0 c x -z a) 

where 
b 

V,', = t 
ae 

(*)xeo sin y dy , etc. 

0 

15 

(19) 

c-33) 

(21) 

cm 

(23) 



GENERAL RESULTS 

The analyses are carried out in appendixes B through E. The results 

are of two kinds: (a) general results valid for any set of geometric, 

material and loading parameters, and (b) numerical results for specific 

cases. The former\are presented in this section, the latter in the next 

section. 

The general results of analyses are in the form of Fourier series 

for computing the plate stresses and stiffener tensions. In the subsec- 

tions below the pertinent Fourier series for each of the various stresses 

will be pointed out. In the final subsection (Evaluation of Series 

Coefficients) the procedures for evaluating the Fourier coefficients in 

these series will be sunrmarized. Enough detail will be given to enable 

the reader to make calculations based on the general results without 

having to study the derivations in the appendixes B through E. 

Series for the Interior Plate Stresses and Interior Stiffener Tensions 

The stress resultants Nx, NY and N 
XY 

at interior points of the 

plate are given by the double Fourker series in equations (B19), (B22) 

and (B25). The stiffener tensions Pi(y), etc. are given by the single 

Fourier series in equations (B16) for all but the end sections of the 

stiffeners. 

Series for Stresses along the Plate Edges 

The shear stress resultant N 
XY 

for points along the plate edges can 

be obtained from the same Fourier series, namely equation (B25), as,for 
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interior points. However the normal stresses along the plate edges 

require special single Fourier series, which will now be given. Equa- 

tions.(B20) and (B21) can be used for evaluating Nx along the edges 

Y = 0 and y = b; equations (B23) and (B24) similarly give N along.the 
Y 

edges x = 0 andx = a. The stresses Nx along the edges x = 0 and x = a 

are given by the series for Nl(y) and N2(y), respectively, in equations (4); 

and similarly N 
Y 

along the edges y = 0 and y = b are given by N3(x) and 

N4(x) series, respectively, in equations (4). 

The series which are referred to above for the normal stresses 

Nx and NY along the plate edges are valid at all points except the 

comers. Special formulas to be used for the comer values of Nx and 

NY will be given subsequently. 

Series for the End Tensions of the Stiffeners 

Where two perfectly flexible stiffeners meet, as at the point 

(a,o) of figure 4a, the tension at the end of each is merely equal to 

the externally applied load, such as P3(a) or P2(0). Where a perfectly 

rigid and perfectly flexible stiffener meet, as at the point (0,b) of 

,figure 4a, the tension at the end-of the rigid stiffener is again equal 

to the applied load, such as Pi(b); but the tension at the end of the 

flexible stiffener, which is provided by the rigid stiffener, is an 

unknown rather than a prescribed quantity. Similarly, where two rigid 

stiffeners meet, as at the comer (a,b) of figure 4c, each stiffener pro- 

vides an unknown.tension to the end of the other stiffener. The tension 

which one stiffener exerts on the end cross-section of the adjacent stif- 
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fener is experienced as a shear force on the end section of the first 

stiffener. This mutual action between the stiffeners at the corner (a,b) 

of figure 4c is illustrated in the sketch below, in which the stiffeners 

are shown disjointed for the sake of clarity. 

P2 (b) 

P2 (b) 

The equations for computing the unknown end tensions are as follows: 

i> Equations (C14) and (C15) for the case of figure 4a. 

ii> Equations (D13) through (D16) for the case of figure 4b. 

iii) Equations (Ell) through (E13) for the case of figure 4c. 

Formulas for the Plate Normal Stresses at the Comers 

None of the series for the plate stress resultants Nx and NY thus 

far presented are valid at the corners of the plate. However, once the 

stiffener end tensions have been determined, these can be used to obtain 

the comer values of Nx and N . 
Y 

The procedure is as follows for the corner 

x=o,y= 0: From equations (1) and (2) the stiffener strains at this 

comer are 
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E 
X 

= e3 (0) + P3(0) /A3E3 

EY 
= cl(O) + Pl(O)/AlEl 

while the plate strains are 

E 
X 

= e,(O,O) + CINx(O,O) - C3Ny(0,0) 

EY = ey(O,O) + C2Ny(0,0) - C3Nx(0,0) 

Equating the stiffener strains and the corresponding plate strains (by 

virtue of the assumed continuity between stiffeners and plate) and 

solving the resulting equations simultaneously for Nx(O,O) and Ny(O,O), 

one obtains 

C2[e3(O>-ex(0,0> 1 + C3[el(0) 
Nx(O,O) = - -~ -- 

-ey(O ,0)1-T -C2P3 (0) /A3E3 + C3P1 (0) iAlE -~ - - 2 
c1c2 - c3 

(24) 

NY(W) = 
Cl[el(0)-e (O,O>l + C3[e3(0)-ex(O,O>l + C.,-l+‘l(0)/AIE1 + C3P3(0)/A3E3 

c1c2 - c; 

In a similar manner, one obtains the following formulas for calculating the 

plate normal stresses at the comers (O,b), (a,O>, and (a,b): 

NxW) = 
C2[e4(0)-ex(0,b> 1 + C3[el(b) ->((3,b)I + C2P4(0)/A4E4 + C3Pl(b)/AlEl 

2 
c1c2 - c3 

(25) 

Cl[el(b)-e (O,b)l + C [e (0) 
NY(W) = - .-Y - - 3. Gp- -e (O,b) 1 + CIPl(b) /A1E1 + C3P4 (0) /&,I$, x 

c1c2 - c3 
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Nx(a,O) = 
C,[e,(a)-ex(a,O)] + C3[e2(0)-e (a,O>] + C2P3(a)/A3E3 + C3P2(0)/A2E2 

c1c2 - cg 
(26) 

Ny(a,O) = 
Cl[e2(0)-e (a,011 + C3[e3W-ex(a,O)l + C1P2(0)/A2E2 + C3P3(a>/A3E3 

2 
c1c2 - c3 

Nx(a,b) = 
C2[e4(a)-ex(a,b)l + C3[e2(b)-e (a,b>l + C2P4(a>/A4E4 + C3P2(b)/A2E2 

2 
c1c2 - c3 

(27) 

Ny(a,b) = 
Cl[e2(b)-e (a,b)l + C31e4(a)-ex(a,b)l + ClP2(b)/A2E2 + C3P4(a)/A4E4 

2 
c1c2 - c3 

When the plate is isotropic and there is no discontinuity of thermal strains 

between stiffeners and plate at the corners, then the above formulas are 

reduced to 

Nx(O ,O> 
P3 (0) Pi(O) 

=&-- - 
A3 E3 + " Al Bl' 

(28) 

NY(W) 
P1 (0) 

=*r-- 
P3(0) 

A1 E1 
-1 + " A3E3 

with similar expressions for the other three comers. 

Evaluation of Series Coefficients 

In order to use the series referred to in the above sections for 

numerical calculation of stresses, one must first evaluate the coefficients 

C’ n' c;, g;, s;, BA etc. (if these coefficients are unknown), cmn, gmn, jmn, 

s' s" s"', and s"" appearing in them. n' n' m m The procedure for evaluating these 

coefficients will now be outlined in detail. It will be seen that the first 

four groups of coefficients, namely ci, c", g:, gi, are the key to all the 

others. 
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i) The case of figure 4a. - The CA, c", g:, and gi are defined by 

the system of equations (C29) to (C32) and can be determined by solving 

these 2N + 2M equations simultaneously for the ;A, z", & ii and noting 

the definitions in equations (B66). As an alternative, equations (C46) 

may be solved simultaneously for the i'm and z"; the EA and zi are then 

obtained directly from equations (C44) and (C45). The alternative is 

preferable because it requires the solution of only 2M simultaneous equa- 

tions, regardless of how large a value is selected for N. With the CA, 

C” n , g:, and gC known, equations (C9) will give the values of B'. n 
If the structure,loading and thermal strains are symmetrical about 

the centerline y = b/2, considerable simplification results. The CA, c", 

s;, and gi are then defined by equations (C50) through (C52). Only the M 

equations (C51) need to be solved simultaneously. They give the g:, after 

which the g", CA, and ci are obtained directly from equations (C50) and 

(C53). Equations (C54) and (C55) may then be used to determine the BA. 

In this case the size of N again does not influence the number of equa- 

tions that have to be solved simultaneously. 

Once the CA, c", g:, gi and BA known, equations (B34), (B35), and (B57) 

through (B61) will furnish the remaining coefficients directly, for either 

the symmetrical or unsymmetrical case. 

ii) The case of figure 4b. - The CA, c", g', gi are defined by the m 
system of equations (D28) through (D31) and can be determined by solving these 

2N + 2M equations simultaneously for the CA, c", & and 2'. As an alternative, m 
equations (D49) may be solved simultaneously for g'm and i"; the EA and z" are n 
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then obtained directly from equations (D42) and (D43)-. The alternative 

requires the solution of only 2M simultaneous equations, regardless how large 

a value is selected for N. With the ci, c", g:, gi known, equations (D9) wil 

furnish the values of Bi and Bi. 

If the structure, loading and thermal strains are symmetrical about 

both centerlines, considerable simplification results. The gi and g" are m 
then defined by equations (D52) and the simultaneous system of (M+1)/2 

equations (D57). The latter may be solved simultaneously for the i;, after 

which the zr n' the ?', B,i, Bi are obtained directly from equations (D56), 

(D53), and (D52). The size of N again does not influence the number of 

equations that have to be solved simultaneously. 

With the CA, c", g:, gi, BA, and B: known, equations (B34), (B35), and 

(B57) through (B61) will furnish the remaining coefficients directly, for 

either the symmetrical or unsymmetrical case. 

iii) The case of fipure 4c. - The BA, B", B':' Bi", c' c", g', and n m n' n m 
g: are defined by the system of equations (E23) through (E30) and can be 

determined by solving these 4N f 4M equations simultaneously for B' n, B;, 

B'm", B;", :A, ?', $, g; and noting the definitions in equations (B66). 

For the case of a square plate (b=a) with structure, loading and 

thermal strains symmetrical about both centerlines (x = a/2 and y = b/2) and 

diagonals, considerable simplification results. The Bi, Bl, B"', Bi", CA, c: m 

g;, and gi are then defined by equations (E31), (E32), and (E33), and the 

M + 1 equations (E34) and (E35). Only equations (E34) and (E35) have to be 

solved simultaneously. 
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With these known, equations (B34), (B35), and (B57) through (B61) 

will furnish the remaining coefficients directly, for either the symmetri- 

cal or unsymmetrical case. 

Limiting case of large stiffener area. - In the appendixes various 

limiting cases are considered in which some or all of the stiffener cross- 

sectional areas are allowed to approach infinity by comparison with the 

plate cross-sectional area. The results of these limiting cases will now 

be described. It will be seen that the calculation procedures for these 

limiting cases are much simpler than for the general case. Except for two 

of the limiting cases considered, it is no longer necessary to solve simul- 

taneous equations in order to determine the Fourier coefficients in the series 

expansions for the stresses. 

(a) The case of figure 4a: For this case all four stiffener 

cross-sectional areas were assumed to approach infinity simultaneously while 

maintaining constant ratios with each other. The results are contained in 

equations (C61) to (C64), which give explicit expressions for c" ns g;, g; 

and c' n, correct to terms of the first degree fn l/(a3EllAlEl). More accurate 

results, correct to terms of the second degree in this quantity, are repre- 

sented by equations (C66), (C67), (C68), and (C70). 

(b) The case of figure 4b: For the configuration of figure 4b 

attention was restricted to the case in which structure, loading, and thermal 

strains are syuanetrical about both centerlines (x = a/2, y = b/2), and five 

different types of limiting case were considered. These five cases are 

described below together with the results obtained form them. 
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(1) A3 =! A4 + 03, Al = A2 remaining finite. The quantities CA, c", g:, 

and gi are defined explicitly by equations (D52), (D59), and (D60). 

(2) A3 = A4 + a, followed by Al = A2 + 03. The results for this iterated 

limiting process are represented by equations (D52), (D62), and (D64) 

(3) Al = A2 + 00, A3 = A4 remaining finite. Equations (D52), (D66), and 

(~68) result. In this case a system of simultaneous equations (D66) has 

to be solved. 

(4) Al = A2 + 03, followed by A3 = A4 + 03. Equations (D52), (D69), 

and (D70) are the result of this limiting process. 

(5) Al(= A2) and A3(= A4> approaching infinity simultaneously while the 

ratio of A 1 to A 3 remains constant. The results are given by equations 

(D52), (D72) and (D73). 

In the above-cited results, CA, c", gi and gi are given correct to terms 

of the first degree in l/(a3EllAlE1). Conditions (2), (4), and (5), 

which are physically identical, also turn out be mathematically identical, 

as an examination of the cited equations will show. 

(c) The case of figure 4c: Here attention was restricted to the 

square case (b = a), with symmetry about both centerlines and diagonals, 

and a particular loading consisting only of prescribed thermal strains. 

The stiffener areas, all equal, were then allowed to approach infinity, 

In view of the highly specialized assumptions no general results will be 

cited for this case. The reader may refer to appendix E for a detailed 

description of the procedure. In this limiting case it is also necessary 

to solve simultaneous equations. 
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NUMERICAL RESULTS 

The foregoing analytical results were used to obtain numerical 

stress data for twelve illustrative problems, ten of them thermal-stress 

problems involving non-uniform.temperature distribution without any 

applied loads, and the other two prescribed-force problems corresponding 

to T 1 = T2 = T # 0 in figure 4b, with all other loads vanishing and 

temperature uniform. 

In all twelve problems the plate was square (b = a) and isotropic, 

with Young's modulus E, Poisson's ratio v, and thickness h. In each 

problem the two x-wise stiffeners were assumed to be identical to each 

other (i.e. A 3 = A4) and the y-wise stiffeners were similarly assumed 

to be identical (i.e. Al = A2). Furthermore, in all but one of the 

problems the x-wise stiffeners were taken to be identical to the 

y-wise stiffeners; in presenting the results for those cases the symbol 

A will designate the common value of Al, A2, A3 and A4, and the symbol 

X the common value of the area-ratio parameters Al and A2, defined as 

follows: hl = 4ah/m2Al, X2 = 4bh/n2A3. The stiffeners were also assumed 

to have the same Young's modulus as the plate. 

In the thermal stress problems, the stiffeners were considered to 

be at a uniform temperature, while the plate was assumed to have a 

pillow-shaped temperature rise, relative to the stiffeners, of the form 

8 sin(mx/a> sin(ry/b); thus 0 denotes the temperature rise of the plate 

center relative to the edges. The symbol o! will denote the coefficient of 

thermal expansion of the plate material. 
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The table below summarizes the twelve problems for which calculations 

were made. The first column indicates for each problem which of the cases 

is being considered, that is, whether one edge, two edges, or all four 

edges are held straight. The second column indicates the loading condi- 

tion. In this column "PSTD" stands for the pillow-shaped temperature dis- 

tribution described above and connotes a purely thermal-stress problem, 

with no applied forces. The notation Tl = T2 = T which appears for two 

of the problems associated with figure 4b denotes a pair of stretching loads 

applied in the x-direction to a structure of uniform temperature. The third 

column shows the value of Poisson's ratio used in the calculations; except 

for one calculation Poisson's ratio was taken as 0.3. The fourth and fifth 

columns give the values of the area-ratio parameters, defined as follows: 

x1 = 4ah/r2Al, A2 = 4bh/r2A3. The value of zero for these parameters refers 

to the limiting case in which the stiffener cross-sectional area approaches 

infinity by comparison with the plate cross-sectional area. Column 6 

gives the equations used to compute the basic unknowns leading to the 

stresses. Column 7 tells in which figures of the present paper the 

results can be found. The results are in the form of dimensionless plots 

of plate stress and stiffener tension, represented by the solid curves of 

figures 6 through 17. The dashed curves which appear on some of the 

figures are selected results from reference 1 for the case in which all 

four stiffeners are perfectly flexible, included for the sake of comparison. 

Additional information of interest concerning the calculations is 

appended in columns 8, 9, and 10. Columns 8 and 9 give the upper limits 
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of the sunnnation indexes employed in the assumed Fourier series for stress 

function and stiffener tensions; M pertains to the x-direction and N to 

y-direction. Only the highest M and N values used for each problem are 

shown. In general, calculations were also made for smaller M and N combi- 

nations in order that the convergence of the calculations could be observed. 

Column 10 shows the IBM 7074 computing time that was required to obtain, 

for the given M and N, all the results plotted in the respective figure. 

The stresses were computed at x/a and y/b intervals of 0.1. Because of 

symmetry it was sufficient to make calculations for only one-half or 

one-fourth of the structure. 

28 



Discussion of Numerical Results for the Thermal-Stress Problems 

Figures 6 through 13, 16 and 17 present the computed results for the 

thermal stresses due to the pillow-shaped temperature distribution. The 

primary effect of assuming some of the stiffeners to be held straight is 

the creation of a running normal stress between these stiffeners and the 

adjacent edge of the plate. These stresses, which would be zero if the 

stiffeners were perfectly flexible, are depicted by Nx(O,y) in figures 6a, 

7a, 8a, 9a, lOa, lla, 12a, 13a, 16a, and 17a, and by Ny(x,O) in figures 

16b and 17b. The maximum running normal stress between a rigid stiffener 

and adjacent plate edge is seen to range from about 35% to about 80% of the 

normal stresses produced in the middle of the plate. 

An interesting discontinuity occurs in the mutual normal stress 

between a plate edge and an adjacent perfectly flexible stiffener where 

that stiffener meets a rigid stiffener, e.g. the stress Ny(x,O) at the 

point x = 0 in figure 6b and the point x = 0 in figure lob. This stress 

is zero everywhere along the edge of the plate except at the corner where 

the rigid and perfectly flexible stiffeners meet. At that point the plate 

stress must jump to a value consistent with the strains at the edges of 

the two meeting stiffeners. The strain at the end of the rigid stiffener 

is zero, but the strain at the end of the flexible stiffener is not zero. 

It is the latter strain, in conjunction with Poisson's ratio, that gives 

rise to the non-zero plate stress right at the corner. 
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Comparison of the dashed curves with the corresponding solid curves 

shows that a further effect of holding one or more edges straight is to 

increase at least one of the normal stresses at the plate center. In 

figure 17a, for example, the normal stress at the plate center is seen to 

be increased almost 80% as a result rigidizing the stiffeners. In figure 

7a 'and 7b, it is seen that the effect of keeping the left side straight. 

is to increase x-wise compressive stress and decrease the y-wise compres- 

sive stress at the plate center due to a pillow-shaped temperature rise. 

A similar result is shown in figures lla and llb when both the left and right 

sides are forced to remain straight. 

On the other hand, comparison of dashed and solid curves for N 
XY 

shows that the maximum shear stress associated with the x and y directions 

is generally reduced by the existence of one or more straight edges. In 

the case of all four edges held straight, the reduction is seen to be quite 

drastic (figs. 16c and 17~). The corner shear stress, in particular, is 

reduced to zero for this case, as one should expect. The non-zero comer 

shear stresses in the other cases are a consequence of the zero bending 

stiffness for at least one of the two stiffeners meeting at every corner. 

Finite stiffener bending stiffness plus rigid joints at the corners would, 

in an actual situation, tend to reduce the corner shear stresses virtually 

to zero. 

In the case of perfectly flexible stiffeners (ref. l), the stif- 

fener tensions approach zero at the ends of the stiffeners. In the present 

case, however, a finite end tension is produced in a perfectly flexible 

stiffener where it meets a rigid stiffener, or in each of two rigid stif- 

feners where they meet. This is shown in figures 6f, 7f, 8f, 9f, lOe, lle, 
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12e, 13e, 16d and 17d. However, the maximum tension in a stiffener still 

occurs away from the end. 

As is to be expected, the ratio of stiffener cross-sectional area 

to plate cross-sectional area has a noticeable influence on the plate normal 

stresses. Increasing this ratio (i.e., diminishing A) tends to increase the 

plate normal stresses; this can be seen, for example, by comparing the central 

value of N 
Y 

in figures 6b and 8b. 

Discussion of Numerical Results for the Applied-Force Problems 

In figures 14 and 15 are plotted the plate stresses and stiffener 

tensions produced by the pulling apart of two opposite stiffeners of infinite 

bending stiffness (fig. 4b with Tl = T2 = T and all other loads and tempera- 

tures zero). From figure 14a and e or 15a and e it is seen that this loading 

produces a nearly uniform tensile stress in the direction of the stretching 

(note that the N x scale in figure 14a does not start at zero). Deviations 

from uniformity are most pronounced near the ends (x = 0). The plate stresses 

in the direction transverse to the stretching are seen to be quite small 

(figs. 14b and 15b) except near the ends, where the Poisson contraction of 

the plate is partially suppressed (fig. 14b) or completely suppressed 

(fig. 15b) by the end stiffener. 

For the case X +O, the plate cross-sectional area becomes negligible 

compared to the stiffener cross-sectional areas, and one should therefore 

expect that the applied load T would be transmitted from one side to the 

other entirely through x-wise stiffeners, causing P3(x)/T to be uniform at 

the value 0.5. Figure 15e shows that this predicted behavior was very nearly 
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achieved by the calculations, which led to values of 0.5 at x = 0 and 

.495 at x = 0.5a. The largest deviation from uniform stiffener tension 

occurred at x : O.la, where a value of .483 was obtained as a result of 

what appears to be a Gibbs phenomenon. For the tension P,(y) in the 

other two stiffener (fig. 15d), the calculation led to zero, which is 

value one should expect for this limiting case. 

The behavior of N 
XY 

in the neighborhood of the plate comer is 

interesting. It seems to become infinite for all values of X as the 

corner is approached (see figs. 14~ and 15~). This singularity was not 

proved mathematically but the evidence for its existence is almost 

unmistakable from the computed values of N xy (OSO) as the upper summation 

limits M and N in the assumed series are increased. This is shown in figure 

15f, where the computed dimensionless comer shear stress is plotted as 

a function of M on semi-log paper for the case M = N. The linearity of 

these graphs indicates rather convincingly that the comer shear stress 

would be infinite for the presumably exact solution (M = N + -). 

This behavior of the comer shear stress must be construed as a 

consequence of the assumption of perfect flexibility for one of the two 

stiffeners meeting at each corner. A similar behavior is obtained when all 

four stiffeners are perfectly flexible, for the case of a step-like tempera- 

ture discontinuity between stiffeners and plate or tensions applied to the 

stiffener ends, as is noted in references 1, 2 and 3. In an actual situation, 

finite flexural stiffness in the stiffeners which were here assumed to have 

none would tend to eliminate the'shear stress singularity at the plate corners. 
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APPLICABILITY OF RESULTS 

There are many plane thermal-stress analyses in the literature for 

rectangular plates with free edges. In aircraft and spacecraft applica- 

tions, however, the plate elements that one is concerned with are almost 

always attached to stiffening members (e.g., spar caps, rib caps, or 

shear-web uprights) along their edges. It was with such plate elements 

in mind that the work in references 1, 2, and 3 was done. In these 

references the stiffeners were assumed to have finite axial stiffness but 

negligible flexural stiffness and the boundary conditions were entirely 

those of prescribed load. Thus, while references 1, 2 and 3 represent 

a step toward more realistic detailed analysis of rectangular-plate 

plane-stress problems, they are not directly applicable to problems in 

which the boundary conditions are those of prescribed shape along one or 

more of the edges. The most obvious examples of such prescribed-shape 

boundary conditions arise when one considers plates that do not end at the 

stiffeners but are continuous across the stiffeners, forming a one-dimensional 

array of panels, as in a shear web, or a two-dimensional array, as in the 

cover of a multi-web multi-spar wing or the skin of a multi-ring multi- 

stringer fuselage. In these cases it may be reasonable to assume that an 

edge which is common to two adjacent panels is forced to remain straight. 

It is with such applications in mind that the present analysis and calcu- 

lations were performed. The assumption of perfect flexibility for the 

stiffeners was retained along some edges; along the other edges this 

assumption was replaced by one of prescribed stiffener shapes plus pre- 
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scribed resultants applied externally to the stiffeners of prescribed 

shape. Although the prescribed shape that one would use in most appli- 

cations is that of straightness, the prescribed shape was left arbitrary 

in the present analysis for the sake of generality and because such 

generality entailed very little additional complication. 

Figure 18 illustrates some of the types of structure to which the 

present paper and references 1, 2 and 3 may be applicable. Part a of 

figure 18 represents a single-bay structure made up of non-coplanar flat 

rectangular plates with stiffeners at their junctions and ends. The 

non-coplanarity of the sides suggests that there is little restraint 

against deformation of the plate edges. The assumption that any panel, 

such as 1234, is a plate with four perfectly flexible edge stiffeners 

may therefore be valid, and consequently the method of references 1, 2 and 

3 may be applicable for the detailed stress analysis of such a panel. 

Part b of figure 18 depicts a two-bay structure. If the loading 

and temperature distributions are approximately symmetrical about the 

central bulkhead or ring, then a panel such as 1234 may be considered as 

a plate bounded by the perfectly flexible stiffeners (12, 23, and 34) and 

one stiffener (41) that is forced to remain straight. Then .appendix C 

and figures 4a, 6, 7, 8, and 9 of the present paper may be applicable. 

Part c of figure 18 denotes a multi-bay wing. In the shear web 

of such a wing, an interior panel, such as 1234, may be approximately like 

a rectangular plate with two opposite edges held straight (14 and 23) 

and with perfectly flexible stiffeners along the other two edges (12 and 
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34). Appendix D and figures 4b, 10, 11, 12, 13 of the present paper may 

therefore be applicable to such a panel. 

Part d of figure 18 represents the cover of a multi-spar multi-rib 

wing or a plate with integral waffle-like stiffening. An interior panel, 

such as 1234, may be approximately a plate with four edge held straight, 

and appendix E and figures 4c, 16, 17 of the present paper may be appli- 

cable to its analysis. 

In the above cases, wherever a stiffener is common to two adjacent 

plate, such as stiffener 12 in figure 18a or stiffener 14 in 18b, its 

cross sectional area should be divided in a reasonable way between the two 

plates which it serves. For example, if in figures 18a, b and d the adjacent 

plates are nearly identical in geometry, loading, and temperature distri- 

bution, then it is reasonable to divide each shared stiffener equally between 

the two plates which it serves. The same can be said about stiffeners 14 

and 23 in figure 18c if the adjacent panels of the shear are similar in 

geometry, heating, and loading. However, the two plates which share 

stiffener 34 in figure 18c (one in the shear web and one in the top cover) 

could be quite different. In such a case it might not be easy to decide 

on the effective cross-sectional area to be used for stiffener 34 when 

analyzing the plate 1234. When such ambiguities result in a significant 

uncertainty in the computed results, then an analysis of the present kind, 

based on isolating one plate and its surrounding stiffeners as a unit, 

might not be applicable. In the unlikely event that the cover plates are 

missing in figure 18c, or have negligible cross-sectional area, then the 

ambiguity referred to above would, of course, not exist. 
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The above remarks concern the applicability of the present analysis 

in general. Some brief comments are, perhaps, also in order on the appli- 

cability of the computed thermal-stress data plotted in figures 6 to 13, 

16, and 17. The geometry and temperature distributions to be expected in 

actual design situations are, of course, manifold. It is therefore not 

suggested that the geometries and temperature distributions assumed in the 

thermal-stress calculations will correspond exactly to a broad spectrum 

of particular design problems. Nevertheless, it is felt that the calcu- 

lations made and the results obtained serve two purposes. First, they attest 

to the feasibility of the calculation procedure, thereby encouraging its 

use for other specific geometries and temperature distributions which might 

correspond more closely to a particular application. Second, they provide 

qualitative information on the thermal plane stresses that may be encountered 

during aerodynamic (or other) heating as a result of a temperature lag between 

a thin plate and the more massive or better insulated stiffening elements 

to which it is attached. The pillow-shaped temperature distribution 

CI sin (TX/a> sin (ny/a) employed in the calculations is not too much dif- 

ferent from the experimental temperatures obtained in a square plate that 

was heated by lamps and cooled by water circulating through hollow edge 

stiffeners (fig. 11 of ref. 4), although the experimental distribution is 

somewhat flatter in the central region of the plate and might be better 

represented by the temperature distributions used in reference 3. In the 

latter reference the temperatures were assumed constant in a central plateau 
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region of the plate, zero at the stiffeners, and varying as one-quarter 

of a sine wave in the transition zone between the stiffeners and the 

central plateau. 

In the thermal-stress calculations (fig. 6 to 13, 16, and 17), 

the rigid stiffeners were assumed to be entirely free of external re- 

straint. That is, the external resultants, such as T 1 and T 2 in figure 

4b, were assumed to be zero along with all the other force loadings. 

Thus, although certain edges were forced to remain straight, these edges 

were free to translate. In an actual situation, there might exist some 

restraint against this translation due to the presence of surrounding 

structure. The effect of such restraint would be to introduce non-zero 

values of the external resultants T 1s T2, etc., with magnitudes depending 

upon the relative stiffness of the plate-stiffener combination and the 

surrounding structure. The stresses due to such externally developed 

restraining forces would have to be superimposed as corrections upon 

those shown in figures 6 to 13, 16 and 17. Figures 14 and 15 show the 

nature of these correction stresses for the case in which restraining 

forces Tl = T2 = T are developed in the structure of figure 4b. From . 

figures 14a and 15a, it can be seen that one effect of preventing the 

separation of the end stiffeners (through the development of a negative 

value of T) is to superimpose a nearly uniform compressive stress in the 

x-direction. From figures 14c and 15c, it is seen that another effect 

is, possibly, the introduction of high plate shear stresses near the 

comers. However, as mentioned earlier, the shear stress singularity 
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at the plate comers would be eliminated in an actual structure by the 

presence of some flexural stiffness in the x-wise stiffeners. 

To illustrate the use of data of the type shown in figures 14 

and 15, let us consider the thermal-stress problem whose results are 

given in figure 11, but this time assume that constraining forces 

T1 = T2 = T exist, which are of appropriate (negative) magnitude to 

prevent completely the overall thermal expansion of the structure in 

the x-direction. In order to determine T, it is necessary to determine 

the elongation Al due to thermal stress from the data of figure 11, the 

elongation A2 due to T from the data of figure 14, and equate their sum 

to zero and solve the resulting equation for T. The two required elon- 

gations can be obtained by integration of the stiffener strains Ed 

or of the plate strains E~(x,Y) along any line parallel to the x-axis. 

The stiffener strains are slightly more convenient in this case, because 

of the absence of the thermal contribution e,(x); they give rise to the 

following expressions for Al and A2: 

112 

Al = 
a P3W 

- dx = 20Xcra 
p3 (xl 

AE G d (:I 
0 0 

a P,(x) 112 

A2 = -&=2g 
p3 (4 

AE 
Fd(z) 

a 

Using numerical integration (trapezoidal rule) in conjunction with figures 

lle and 14e to evaluate the right-hand sides of these expressions, one 

obtains 
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A1 = 0.2393 BAaa 

A2 = 0.2185 Ta/(AE) 

The condition Al + A2 = 0 then gives 

T=- .4439 BaahE 

The plate and stiffener stresses due to this value of T can now 

be obtained from figure 14. Superposition of these stresses and the 

ones in figure 11 will give the stresses produced by the pillow-shaped 

temperature rise when the overall expansion of the plate in the x-direc- 

tion is prevented. The results are shown by the dotted curve of figure 

19. The solid curves are the data of figure 11, repeated for comparison. 

It is seen from figures 19a and e that the normal stresses in the x-direc- 

tion are, of course, appreciably altered by the suppression of the overall 

thermal expansion in the x-direction. Figures 19b and d show only minor 

alterations in the normal stresses in the y-direction. Figure 19c shows 

that the shear stresses also are only slightly affected, except in the 

neighborhood of the comer (x and y < O.la), where the effect of the singu- 

larity in shear stress due to T is felt. Accepting this singularity as 

illusory for reasons already cited, it can be concluded that in this 

example the suppression of the x-wise expansion has a significant effect 

only on the x-wise normal stresses. 
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CONCLUDING REMARKS 

Many detailed plane-stress analyses are available in the literature 

for rectangular plates with unstiffened edges, subjected to boundary 

forces or non-uniform temperature distributions. Rectangular plates with 

stiffened edges have been treated to a lesser extent in the literature, 

mainly in "shear-lag" analyses. These are generally restricted to uni- 

form temperatures and unidirectional loading and are characterized by 

simplifying assumptions regarding the stresses or elastic constants. 

Rectangular plates in practice generally have stiffening members 

along their edges and may be subjected to non-uniform temperature rises 

and multidirectional loading. In addition it may be important to have 

some of the detailed information about the stresses which is lost in the 

usual type of shear-lag analysis. Therefore in reference 1 a unified 

analysis of the edge-stiffened rectangular plate was presented, including 

both non-uniform temperature distributions and prescribed boundary load- 

ings of a very general nature. The plate material was assumed to be 

homogeneous, linearly elastic, and orthotropic, but no further simpli- 

fying assumptions were introduced regarding the stress distributions 

or the elastic properties of the plate. The stiffeners were assumed to 

have finite extensional stiffness but negligible flexural stiffness. The 

boundary conditions considered were entirely those of prescribed running 

normal and shear loading along the outer periphery of the stiffeners and 

prescribed forces at the stiffener ends. 
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The present paper represents a generalization of reference 1. 

It permits the boundary condition of prescribed normal loading along 

some of the edges to be replaced by the boundary condition of pre- 

I scribed shape of the stiffener axis. Generally, the prescribed shape 

that one would encounter in practice is that of straightness due to 

symmetry, continuity, or rigid fixation. However, for the sake of 

generality, and because it involved no great complication, the present 

analysis also permits prescribed edge shapes other than straight. Along 

the remaining edges the stiffeners have been assumed to have finite ex- 

tensional stiffness but negligible bending stiffness, as in reference 1. 

Through this generalization of the boundary conditions, certain problems 

can be handled which are not directly solvable by the method of reference 

1 alone. 

The present method and that of reference 1 are based on Fourier 

series - double series for the plate stress function, single series for 

the stiffener tensions and certain other quantities. In some cases many 

terms of the series may be needed for sufficient accuracy, and therefore 

the feasibility of these methods depends on the availability of high-speed 

computers. This feasibility has been tested in the present paper through 

twelve specific numerical examples, solved with the aid of an IBM 7074 

computer. The machine time required to obtain detailed stress surveys in 

one quadrant or in one half of the structure, depending on the type of 

symmetry, ranged from 2.5 minutes to 21 minutes in these examples. 
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The assumption of negligible bending stiffness for those stiffeners 

whose shape is not prescribed sometimes produces infinite plate shear 

stress at a comer where such a stiffener meets a stiffener of prescribed 

shape. This was noted in figures 14 and 15 of the present paper. A 

similar anomaly was observed in references 1, 2 and 3. Its elimination 

would require the incorporation of finite stiffener flexural stiffness 

into the analysis. 
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APFZNDMA 

SYMBOLS 

Remarks: (i) The subscript 1, 2, 3 or 4 on a symbol for a stiffener- 

related quantity identifies the stiffener location as x = 0, x = a, y = 0, 

or y = b, respectively. (ii) The F ourier coefficients of known quantities 

(loads, thermal strains), and combinations of such coefficients, are 

generally represented by capital letters, while the Fourier coefficients 

of initially unknown quantities (e.g., internal stresses) are denoted by 

small letters. (iii) The symbols for convenience represent the known 

quantities in illustrative problems are not listed here. 

a 

a 

Al,A2,A3,A4 

A 

plate dimension in x direction; see figure 1. 

Fourier coefficients in series expansion for the stress 

function F(x,y); see equations (Bl5), (Bl7) and (B50). 

Fourier coefficients in series expansions for F(O,y), 

F(a,y), F(x,O), F(x,b) respectively; see equations 

(Bl3) and (B14). 

stiffener cross-sectional areas. 

common value of the above when all four stiffeners are 

identical and uniform. 

plate dimension in y direction; see figure 1. 

Fourier coefficients in series expansions for Nl,N2,N3,N4 

respectively; see equations (4) and (5). 

a/b 

Fourier coefficients in series expansion for Ny(x,y); see 

equations (B22) and (B35). 
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-1 - I, 
'nJcn 

C,,C2,C3,C4 

C 

dmn 

Dn 

‘DA 

D; 

e 

Fourier coefficients in series expansions for Ny(O,y) and 

Ny(a,y) respectively; see equations (B23) and (B24). 

c' C2 nn/b, ci C2 nn/b. 
.n 
plate compliances defined-by equations (3). 

A3/Al, if Al = A2 and A3 = A4. 

Fourier coefficients in series expansion for a3F/ax3; 

see equations (B41) and (B46). 

d2)12 n 
- (y(l))2 

n 

defined by equation (Dll). 

defined by equation (Dl2). 
,' 

Fourier coefficients in series expansion for a4F/ax4; 

see equations (B26) and (B37). 

el(y),e2(y),e3(x),e,(x) 
stiffener thermal strains; see figure 2. 

ex(x,y),ey(x,y) 

Emrl 

El1 

El, E2 9 E3, E4 

E 

F(x,Y) 

%n 

plate thermal strains; see figure 2. 

C2Cmda)4 + CC4 - 2C3)(mx/a)2(nn/b)2 + Cl(n'/b)4. 

value of above with m = 1 and n = 1. 

Young's modulus for stiffeners. 

Young's modulus for stiffeners and isotropic plate when 

all have the same Young's modulus. 

stress function for plate; see equation (B4). 

Fourier coefficients in series expansion for Nx(x,y); 

see equations (Big) and (B34). 

Fourier coefficients in series expansions for Nx(x,O) 

and Nx(x,b) respectively; see equations (B20) and (B21). 
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h 

hmn 

*Al 

i 

i 

Ann 

Ytln 

5nn 

m,n,p, 9 

M 

MlJ$M3,M4 

n 

N 

G Cl m/a, G CL m/a 

thickness when plate is isotropic. 

Fourier coefficients in series expansions for a3F/ay3; 

see equation (B42) and (B47). 

(1/E,n)(2/a)(n*/b)3Cl - @/a)b/nfl) 

1, 2, 3, or 4. 

Fourier coefficients in series expansion a4F/ay4; 

see equations (B27) and (B38). 

Fourier coefficients in series expansion for N 
w; see 

equation (B25); see equation (B36) for value of j,,. 

combinations of known Fourier coefficients, defined 

by equation (B69). 

Fourier coefficients in series expansions for prescribed 

boundary curvatures; see equations (8) to (IS!). 

Fourier coefficients in series expansion for (a3F/ax2ay); 

see equations (B43) and (B&8). 

summation indexes (integers). 

upper limit on m, p, and i. 

loading resultants; see figures 4. 

summation index (integer). 

upper limit on n and q. 

external running tensions, force per unit length; see figure 1. 

Nx,N ,N Y XY 
plate stress-resultants, force per unit length; see figure 3. 

P summation index (integer). 

Pmrl Fourier coefficients in series expansion for a4F/ax2ay2; 

see equations (B28) and (B3g). 
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Pl(Y)1p2(Y),p3(x),p~(x) 

stiffener cross-sectional tensions; see figure 3. 

P,(~),P,~b),P,(O),P,(b),Pj(O),Pj(a),Pq(O~~~ 
stiffener end loads; see figure 1. 

PrQ integers appearinglin sinusoidal temperature distribution ,' 

expansion; see equation (C71). 

9 summation index (integer). 

sl(Y),~(Y),s3(x),q~4(x) 

external shear-flow loadings; see figure 1. 

Fourier coefficients in series expansions for q1,q2,q3,q4 

respectively; see equations (6) and (7). 

combinations of known Fourier coefficients, defined by 

equations (B68) and (B69). 

Fourier coefficients in series expansions for the stiffener 

cross sectional tensions; see equations (B16) and (B&I). 

s(1),s(2),s(3),s(4) 
n n m m 

completely known loading terms; defined by equations (C17) 

through (C20). 

p,(6),,(7),,(8) 
n m m 

completely known loading terms; defined by equations (D18) 

through (D21). 

s, s;, s;", Sl" completely known loading terms; defined by equations (E15) 

through (~18). 

&) 

,E) 

known quantities; defined by equation (C21). 

mn known quantities; defined by equation (D22). 

;(3),,(4) 
m m known loading terms, defined by equations (C58b) and (C5ga). 
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t;, t;, ,A”, ti”” m 

TDm 

Tl, T2, T3, T4 

TO 

U,V 

'n 

V 

v w 
V' 

mp 
VA 

Fourier coefficients in series expansions for the derivatives 

of the stiffener cross-sectional tensions; see equations 

(B29) and (B33). 

Fourier coefficients ,in series expansion for a2e 
y/ 

ax2 + 

a2ex/ay2; see equation (13), also equations (16), (17) 

and (18). 

Fourier coefficients in series expansions for thermal- 

strain discontinuities between stiffeners and plate edges; 

see equations (13) and (14). 

loading resultants; see figure 4. 

stiffener temperature for the sinusoidal plate temperature 

distribution. 

x and y components of displacements in plate. 

known quantities, defined by equation (C57a). 

plate displacement component in y-direction. 

known quantities, defined by equation (C58a). 

know-n quantities, defined by equation (D38a). 

known quantities, defined by equation (D58~). 

Fourier coefficients in series expansions for (aey/ax)x_o 

etc.; see equations (19) through (23). 

Fourier coefficients in series expansion for (a3F/axay2); 

see equations (B44) and (B49). 

Cartesian coordinates; see figure 1 

Cartesian coordinate; see figure 1 

dummy variables representing y 

known loading terms; see equations (C7Ca),(C66a),(C67a), 

and (C68a). 
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z;, z; known quantities; defined by equations (D64a) and (D58b). 

a coefficient of thermal expansion of plate and stiffeners 

in numerical,examples. 

al(n),a2(n),a3(m),a4(m) 

known quantities; defined by equations (B67). 

Bib), B2(m) known quantities, defined by equations (B67). 

Y;, 7;, ?A", 7;" known quantities, defined by equations (C22),(C23),(D23) 

and (C56d). 

&l), p9 
n n known quantities, g iven by equations (ClO) and (D6). 

P, r;, r-y known quantities, given by equations (Elg) through (E21). 

r(l), 42) 
m m known quantities, g iven by equations (E25a) and (E25b). 

p, ,r;r;l,rm&l 

$),,.(3) #+) 

known quantities, given by equation (~36). 

mp mn'mn known quantities, g iven by equation (D35). 

6 ij 

A n 

An,A;,A; 

&),A(2) 
n pn 

known loading terms, defined by equations (Cll). 

known loading terms, defined by equations (D7) and (D8). 

known loading terms, defined by equations (E23a), (E24a), 

(E25c) and (E26a). 

Kronecker's delta, unity when both subscripts are equal, 

zero otherwise. 

completely known loading terms, defined by equation (C64a). 

known quantities, defined by equations (C56a), (C56b) and 

(~56~). 

known quantities, defined by equations (D6lb) and (D63a). 

~x(x,YL~y(%Y), rxy(x'Y) 

plate total strains; see equations (2). 

el(Y),e2(Y), E3(X),E4(X) 

stiffener total strains; see equations (1) 
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4n known quantities, defined by equations (D56b). 

s;, ';; known quantities, defined by equations (C34). 

@, p 
n n known quantities, defined by equations (D33). 

l-IA> l-l& known quantities, defined by equations (C41). 

known quantities, defined by equations (D39). 

known quantities, g iven by equations (C&O), (C42). 

&),e(2),e(3),Q(4) 
mp w mp mp 

8’ ,0& 
mp 

A A 1' 2 

A 

V 

known quantities, g iven by equations (D38) and (D40). 

known quantities, defined by equations (D57a) and (D57b)- 

area-ratio parameter used in numerical example, defined 

by equations (C&I) 

common value of hl and h2 when they are equal. 

known quantities; defined by equations (E23b) and (E25d). 

known quantities, defined by equations (Cl.2) and (E25e). 

known quantities, defined by equations (Cl3) and (E25f). 

Poisson's ratio for isotropic plate. 

known quantities, defined by equations (C35). 

known quantities, defined by equations (D34). 

known quantities, defined by equations (D56~). 

known quantities, defined by equations (C56e). 

known quantities, defined by equations (C56f) and (D6la). 

known quantities, defined by equations (E22). 

known quantities, -defined by equations c&3). 

known quantities, defined by equations (D41). 

49 



fJ’ f (J”’ .“” mp mn'mn known quantities, defined by equations (C37). 

#n known quantities, defined by equations (D56a). 

ei;> #;, ~~“, !?y’ known quantities, defined by equations (C33). 

+l),g(2),p(3),g(4) 
n n n n 

known quantities, defined by equations (D32). 

$jv&" - $$fJj;"~ 

glWpr(4) 
n n 

_ g(2)+‘) 
n n 

1 - % 

known quantities, defined by equations (~48). 

known quantities, defined by equations (D51). 

known quantities, defined by equations (C47). 

Jr’ mP 
known quantities, defined by equations (D50). 
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APPENBIXB 

ANALYSIS FOR THE CASE IN WHICH THE BOUNDARY CONDITIONS 

ARE ENTIRELY THOSE OF PRESCRIBED LOADING (ref. 1) 

The case in which curvatures are prescribed along one or more edges 

can best be analyzed by making appropriate modifications in the basic 

analysis of reference 1, in which the boundary conditions are entirely 

those of prescribed loading. Therefore the analysis of reference 1 

for the case of constant-area stiffeners is summarized in this appendix, 

and portions of it will be used as needed in the subsequent appendices 

when various cases of prescribed boundary curvature are considered. 

Basic Equations 

With u(x,y) and v(x,y) denoting the x- and y-components, respectively, 

of infinitesimal displacement, the strain-displacement relations for the 

plate are 

au 3V au av E =- ax E =- X Y ay Y =---+- xy ay ax (Bl) 

Equstions (Bl)'imply the following compatibility condition on the strains 

a27 a2E a2E xy X 
axay --- --J=O 

ay2 ax2 (B2) 

The plate equilibrium equations, namely 

(B3) 

imply the existence of a stress function F(x,y) such that 
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N =$ 
X 

ay 

N =i$ NW=& 
Y ax XY 04) 

Eliminating eX, E and y 
Y w 

in equation (B2) by means of the stress- 

strain relations, equations (2), and then Nx, Ny and N 
XY 

through equations 

(Bk), yields the following form of the compatibility equation: 

= 0 035) 

Considering infinitesimal lengths of the stiffeners as free bodies, 

and utilizing the third of equations (B4) to express N 
XY at the plate 

edges in terms of F(x,y), one obtains the following equilibrium equations 

governing the longitudinal variations of the stiffener axial forces. 

dqdy - @2F/axay)x_, - ql(y) = 0 

dP,/dy + @2F/axay)x=a + ¶,&d = 0 

dP3/b - (a2F/axay)y=o - q3(x) = 0 

a4/b + (a2F/axaY)y=b l Sq(X) = 0 

The stiffeners and plate edges, being integrally attached, must have 

equal longitudinal strains along all four edges. Using the stress-strain 

relations (eqs. (1) and (2)), the stress function defined by equations 

@4), and the assumption of perfect stiffener flexibility (i.e., 

(JJJ~)~=~ = Nl(y), etc. 1, these conditions lead to the following 

equations: 
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P,(Y) 

*lEl 
- + [cl(Y) - ey(O,y)l - C2( 

x=0 
+ C3Nl(y) = 0 1 

p,(Y) 
- + [e2(y) 

a% 

A2E2 
- ey(w41 - c2(--$ 

x=a 
+ c3N2(Y) = 0 

> (B7) 

p,(x) 2 

*JE3 
- + [e3(x) - ex(x,O)l - c,(o) 

a2 Y y=o 
+ C3N3(x) = 0 

p,<x> 2 
- + [e4(x) 
A4E4 

- ex(x,b) 1 - cl(=) 
a2 Y y=b 

+ C3N4(x) = 0 

Boundary Values of Stress Function F(x,y) 

The fact that the distributed boundary normal loadings Nl(y), 

N2(y), N3bd, and N4(x) are transmitted directly to the plate means 

that the second derivative of F(x,y) in the direction of the edge is 

known. Therefore two integrations will give the variation of F along 

each edge in terms of the unknown corner values and the known N 1' N2' 

N3, N4- As an illustration, along the edge x = 0, a2F(0,y)/ay2 = Nl(y), 

and two integrations lead to 

b Y' 
F(O,y) = F(O,O) + E [F(O,b) - F(O,O) - 

JJ 
Nl(y")dy"dy' 1 + 

00 

Y Y' 
+ 
JJ 

Nl(y")dy"dy' 6381 

00 

(Here F has been assumed continuous along the perimeter of the plate, 

including the corners.) Replacing Nl(y") by its series expansion, 
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equation (4), and carrying out the integrations indicated in equation 

w, one obtains 

N 

F@,Y) = F(O,O) + $ [F(O,b) - F(O,O)l - 
c 

BA($)2 sin y 

n=l 
(B9) 

Similarly, the variation of F(x,y) along the other plate edges is as 

follows: 

F(a,y) = F '(a,O) + $[F '(a,b) - F(a,O)] -fD, ($)2 sin EbX 
n=l @lo) 

M 

F(x,O) = F(O,O) + t[F(a,O)-F(O,O)l -c Bm"(k)2 sin y 

m=l 

F(x,b) = F(O,b) + t[F(a,b)-F(O,b)] -f Bill(&)' 

(B11) 

sin y 

m=l 
(BQ) 

For the later use it will be necessary to expand the boundary 

values of F in single Fourier series of the following form: 

N 

F(O,y) = c an sin (nJry/b) (0 < Y < b) 0 
n-l 

N 

F(a,y) = c ai sin (n~y/b) (0 < y < b). 
I 

n=l 
M (B13) 

F(x,O) = 1 am" sin (mnx/a) (0 < x < a) 
i - 

m=l 
M I 

F(x,b) = 1 ai" sin (m,x/a) 
m=l 

(0 < x < a) 

Determining the coefficients in these series through the formula 
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a’ = 
n (2/b) ] F&Y 

0 

.) sin (nny/b ) dy, 

etc., with F(O,y), etc. replaced by the right-hand sides of equations 

(Bg) to (Bl2), one obtains 

a' n = & [F&O) - (-l)n F(O,b)l - ($)2 Bn 

a 1111 1 m = k [F(O,b) - (-l)m F(a,b)] - (k)2 Bc" 

a" n = & [F(a,O) - (-l>n F(a,b)l - (&)2 B"n 

(B14) 
a 1 '1 
m = 5 [F(O,O) - (-l)m F(a,O)] - (2)2 Bm" 

Series Assumptions for F(x,y) and P,(y), PS(y), P:(x), and P,:(x) 

The stress function F(x,y) will be assumed to be representable in 

the interior of the plate (i.e. intheopenregionO<x<a,O<y<b) 

by the double Fourier series 

F(x,y) = f f amn sin (mJrx/a) sin (nay/b) 

m=l n=l 
(Bl5) 

with as yet unknown coefficients. Equation (Bl5) is not valid at the 

plate edges; however there the values of F are already expressed in 

series form by equations (Bl3) and (B14). Similarly the unknown stiffener 

axial forces will be assumed in the form 
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P,(Y) = f s; sin (nny/b) 

n=l 

P,(Y) = f si sin (nfly/b) 

n=l 
M 

P,(x) = 1 sm" sin (m,x/a) 

m=l 
M 

P,(x) = 
c 

SC' sin (m,x/a) 

m=l 

@<y-d 

(0 < Y <b) 

(0 < x < a) 

(0 < x < a) 

\ 

) om 

/ 

At the end cross sections the stiffener forces are already known from 

the given loading (see fig. l)- 

The coefficients in the series in equations (B15) and (B16) are 

related to the left-hand sides through the usual formulas 

ba 
4 a mn=ab JJ 

F(x,Y) sin y sin y dx dy 

00 

b 

1 
P,(y) sin y dy, etc. 

0 

@I71 

w3) 

Series for the Derivatives of F(x,y) and P lp2'+k 

The derivatives appearing in equations (B4) to (B7) will be assumed 

representable by the following series: 

Nx = a2F/ay2 =I 1 sn s 
m=l n=l 

M N 

in (m,x/a) s 

(0 < x < a) 

in (nny/b) 

(0 < y < b) 

!=9) 
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M 

(Nx)y,o = @2F/ay2)yzo = c g; sin (m,x/a) (0 < x < a) 

M 

(Nx)y,b = (a2F/ay2), = c I$, sin (msrx/a) (0 < x < a) 
m=l (B21) 

M N (0 < x < a) 
NY = a2F/ax2 = c xcm sin (msrx/a) sin (nrry/b) 

m=l n=l (0 < Y < b) 

(B22 1 
N 

(",,,=o = (a2F/ax2)x_, = 1 C; sin (nny/b) (0 < Y < b) 
n=l (B23) 
N 

(“,),a = (a2F/ax2JxEa = 1 C; sin (nny/b) (0 < Y <b) 
n=l (~24 1 

M N 
= -a2F/axay = - 

xc 

(0 < x 5 a) 
N 

w Ln cos (mflx/a) cos (nny/b) 
m=O n=O '(0 5 Y 5 b) 

(B25 ) 
M N 

a4F/ax4 = c 1 em sin (mnx/a) sin (nny/b) 
(0 < x < a) 

(B26) 
m=l n=l (0 < y < b) 

a4F/ay4 = f f 
(0 < x < a) 

i mn sin (m,x/a) sin (nny/b) (B27) 
m=l n=l (O<y<b)- 

M N 

a4F/ax2 aY2 = x 1 p, sin (m,x/a) sin (nTty/b) 
(0 < x < a) 

m=l n=l (0 < Y < b) 

iB28) 
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N 

ul/dy = 1 t; cos (nrry/b) (0 <Y 9) 
n=o 

N 

a2/dy = 1 
ti cos (nrry/b) (OIYIW 

n=O 

M 

dP3/dx = C t I” cos (mrrx/a) m (0 5 x < a> 

m=O 

M 

(B29) 

dP4/dx = 
c 

tin cos (mflx/a) (0 5 x 5 a> 
m=O 

where ba 
4 

gmrl =ab rl- 
ca$/ay2) sin (mJrx/a) sin (nny/b) dx dy, etc. 

00 
(B3@ 

a 

I 
@'way2 lyzo sin (m7rx/a) dx, etc. 

0 
031) 

jm = 

@-Q-J2-6no) b a 

ab l-l- 
(a2F/axay).os(m~x/a)cos(nrry/b)dxdy 

00 
(B32) 

(dPl/dy) cos (nny/b) dy, etc. @33 1 
0 

The coefficients appearing in the series for the derivatives (eqs. 

(Bl9) to 6329)) are not independent of the coefficients in the series for 

the basic quantities (eqs. (B15) and (B16)). The former can be related 

to the latter by using integration-by-parts*** In the right-hand sides of 

equations (BYJO) to (B33). For example, two partial integrations with 
** 

Such ,a technique was employed for plate bending problems by A. E. Green 
(ref. 51, who ascribes its earlier use to S. Goldstein. 
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respect to y in equation (B30) give 

nz 2 
Qmn 

- [a;" - (-1)" a:"] - (E3)2 am 
=bb 034 > 

Similarly, 

mrr 2 C =-- [a' - aa n (-1) 0335 ) 

jm = 
(2-q& Wno) 

ab [(-l)mtn F(a,b) - (-l>m F(a,O) - (-l)%(o,b) + ~(o,o)] 

rnfl 2'6n0 + - - [(-l)nai" - a;"] + F 2 - 'rnC, 
a b 

a [(-1)51; - aA1 + 

+= nna 
a bmn 0336) 

rnfl 2 32 e =-- EC aa n - (-#PI - (2, ; Ia; - (-l)m ai] + (g4 amn 

037) 

i nn 2 nn 3 2 
4 

= b r; [G - (-l)ngi] - (-r;) b [aA" - (-l)n a:"] + (y) amn 

(B38) 

4 
Pmn =ab 5 y [(-l)m?F'(a,b) - (-l)m F(a,O) - (-l)n F(O,b) + F(O,O)] 

2 m2 +i;( a) 
y [(,l)n ai” - aA” J + g(y)2 E [ (-l)mal - a;] 

(B39) 
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. .._-_ ., __,._,.-..- ..--.-. -.. .__ -.----- 

*- %lo t’ = - 
n b [(-1)" Pi(b) - Pi(O)] + y sn 

*:6no t; = - 
b [(dn P*(b) - P*(O)] + T s; 

*- 6mo 
tlY = - a CC-l>" P,(a) - P3(0)] + y s;” 

*"mo 
%" = - a C(-ljm Pq(a) - Pk(0)] + 2 sl' 

Reference 1 did not require series expansions for a3F/ax ', a3F/ay3, 

a3F/ax2ay, and a3F/axay2, but the present paper will require such expansions 

in the subsequent appendices. These derivatives will therefore be 

assumed expandable in the following series: 

M N (0 5 x 5 a> 
a3F/ax3 = cc dmn cos (mnx/a) sin (nny/b) 

m=O n=l (0 < Y <b) 

(B41) 

a3F/ay3 = f f hmn sin (mnx/a) cos (nny/b) 
(0 < x < a) 

m=l n=O (05~9') 

(~42) 

a%/ax2ay = f fim sin (m,x/a) cos (nay/b) :I 1 z z L; 

m-1 n=O 
0343) 

a3F/axay2 = fi: t wm cos (m,x/a) sin (nay/b) :I E : E ,": 

m=O n=l 
(B44) 

where 

(a3F/ax3) cos (mnx/a) sin (nlry/b) dxdy, etc. 

00 
(B45) 
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By using integration-by-parts in the right-hand sides of above equations, 

one obtains 

2-Q 
dmn = - a [(-l)m Ci - CA] - E(2)2[(-l)ma: - aA] - (z)3am 

0346) 

Similarly, 

*-'no hmn = - b [(-l)nG - gm] - g(y)2[(-l)nai" - am"] - (EL)' amn 

(B47) 

2 2'6no =- -- 
a b (E)[(-l)m+n F(a,b) - (-1)" F(a,O) - (-l)nF(o,b) + F(o,o)] 

[(-l)mai-an] - (E)* y amn 

(B48 1 
nn W Inn= - -g jm 

(2-6,0) 
= - 

a g(2)[(-l)m+n F(a,b) - (-ljrn F(a,O) - (-l)n F(O,b) + F(o,o)] 

- a i; b [(-l)“a;Lalhl] - ?I+ mn 2 nn (y)* [(-l)mai - a,;1 

(B49 1 

Through equations (B34) to (B40) and (B46) to (B49) all the unknown 

coefficients in the derivative series are expressed in terms of the basic 

unknowns a * c' mn' n' c;, g;, g;; d, s;, s;", s;"; F(O,O), F(O,b), F(a,O) 

and F(a,b) 
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Series Solution for Basic Equations (B5) to (B7) 

Considering first equation (B5), substituting into it the series 

expansions for equations (15) and (B27) to (P29), eliminating emn, imn, 

andpmn through (B37) to (B39), eliminating an, a", am", and a;" through 

equations (Blk), and then solving for a ml-l' one obtains 

4 a = 2 [(-l)m+n F(a,b) - (-l>m F(a,O) - (-l>n F(O,b) + F(O,O)] 
mnn 

_ $m (T,, + p 5 [“,: - (-l)mC;] c2 + ; y [g; - (-l? g,lllc, 
mn 

+ : y (&)*[B, - (-l)mB;Jc(~)*C, + (?I2 (C4 - *c3)I 

+ g y (z)"IB;" - (-l)n Bb;"l[(y)* Cl+ (3*(C4 - *C3)Lll 

0350) 

where 
4 2 2 4 

Emn = C*(%) + (c4 - 2c3)($) (Y, + Cl(Y) 051) 

Thus the unknown amn have been obtained in terms of the smaller class 

of unknowns, cr;, c;, g;, g;, through the compatibility equation. 

Turning now to the stiffener equilibrium equations (B6), substituting 

the series from equations (B25), (B29) and (6), and utilizing equations 

040 1, one obtains the relationships 

*"no 
M 

b [i-l)" Pi(b) - Pl(0)l + y sn - QJn - 1 j =o mn 
m=O 

(n=O,l,*,...,N) 

iB5* > 
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*+no 
M 

b [(-l)n p*(b) - p2(0)] + y si + q + x(-l)m jmn = 0 

m=O 

(n=O,1,2, . . ..N) 0353 > 

*- 'mo 
N 

8 [(-l)m p,(a) - p3(0)1 + T smtl - SW - x jmn = 0 

n=O 

(m=O,1,2, . . ..M) (B54 1 

*-'mo 
N 

a 1(-l)" p4(a) - p4(0)] + : sin + s" + x (-l)n jmn = 0 
n=O 

(m=O,l,*,...,M) 

From equations (B36) and (Bl4), it is noted that 

(B55) 

joo = $g [F(a,b) - F(a,O) - F(O,b) + F(O,O)] (B56) 

J0n = 2 nz ' b (B,', - B;) for n # 0 

jmo = 2 2 (Bm" - BtYl") for m # 0 

(B57) 

(B58 1 

Using these results in the n=O and m=O equations (B52) to (B55), one 

obtains four expansions for joo, of which three are redundant because 

the structure as a whole in equilibrium (see ref. 1). Selecting the 

first as non-redundant, 

M 

Jo0 = -Q; + ; (Pi(b) - Pi(O) + 1 ; (B;" - Bm")) (B59) 
m=l 

Finally, substituting into equations (B7) the series expansions 

(4 .>, 031, (Bl6), (B20), (B21), (B23), and (B24), one from equations 

obtains 

63 



sr;/(+) + T’ n - C2 c; + C3B; = 0 

s;/(A2E2) + T" - C2 $n + C B" = 0 
n 3n 

(B@) 
sm"/(A3E3) + T;,, - Cl g'm + C B'" = 0 

3m 

s;y ( A4E4) + T;,, - Cl g'm + C3B;" = 0 

Reduction in the Number of Simultaneous Equations 

Essentially the problem has now been reduced to the solution of 

equations (B50), (B52) to (B55) and (B60) for the unknowns amn, sn, 

w s , 1 11 l, l, 
n sm J sm J $J c ", G and ghl. Since equation (B50) explicitly 

expresses a in terms of c' U n' CnJ kg' and g", the solution of equations 

@5*) to @55), and (B&I) for sn, sl, sm", si", cn, ci, g'm and gi will 

be sufficient. However, further reduction in the number of equations 

to be solved may still be attained by using equations (B&I) to express 

sn, s:, sm' and 

0355 1, with the 

obtain a system 

G are the only 

S MU in terms of c' It m n' 'n' G g. and Equations (B52) to 

n=O and m=O equations excluded' can then be used to 

of simultaneous equations in which the cAJ ciJ g'm and 

unknowns. This is accomplished by eliminating snJ siJ 

S 1 If 
m' and s"" m with the aid of equations (B60), and jmn by means of the 

following expression 

+ $- (2(E)3 LB;" - (-l)nB;']C2 + z (y)' [Bn - (-l)%']C,] 
mnba 

(B61) 
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which is obtained from equations (B36), (Blk), and (B50). The resulting 

form of equations (B52) to (B55) is: 

M 
G; a,(n) - ci Bl(n) = RA - p(y)* 1 

m=l 

M 

ii; - (4 ig 

Emn 

( -1 * 
n- , ,...'N) 

(~62 > 

-GA Bl(n) + C: q(n) = Rfl + g(y)' x(-l)m ' - (-l)n' (n=l,2,, ..,N) E 

m=l mn 
(B63 1 

N - (-1)m -,'I 
G cr;j(m) - <s,(m) = R;" - z(F)* x ",', E n (m=l,2, . . ..M) 

n=l mn 
w4 1 

2 N 'cl - (-1)m Elf 
-Gp2(m) + -G orq(m) = Rg" + z(2) 1 (-l)n n E n (m=l,*,...,M) 

n=l mn 
b65 1 

where 

Cl = c’ 
n n c2(nIT/b)J ci = cz C2(nn/b), -G = $hcl(m?r/a), -G = G Cl(mn/a) 

M CY,(n) = AIEl t- ; 1 
m=l mn 

M or*(n) = A2E2 + z 
1 

(m;/a)* 

m=l mn 

N olj(m) = A3E3 + 2 
c 

(n;/b)* 

n=l mn 

N CY4(m) = k&E4 + E 
1 

(n;/b)2 

n=l mn 

M 
pi(n) = 5 1 (-l)~(ms/a) 

2 

m=l mn 

B2(m) = g f ( -l)n(nfl/b)2 
E 

n=l mn 

0366) 

(B67) 
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and RnJ R" nJ Rm", R;" are the following combinations of known thermal 

and loading quantities: 
M 

Rn = QJn + $Pl(0) - (-l)nPl(b)] + &(Bn-B;) + Al~ly(~3~n + T;) - 1~~ 
m=l 

M 

R; = -q + $[P*(o) - (-l)nP2(b)] - J-&B;-B;) + A*E* $(c3~; + T;)+ 
m=l 

N 

RIil" = %l" + 
E[P3(0)-(-l)mP3(a)l+ &(B;"-B;") ,+ A3E3 ~(c~B;"+T;~~) - 1 Kmn 

n=l 
N 

R;" = +-q, + 3P4(0)-(-l)mP4(a)]- &(Bm"-B;")+A4E4 2(C3B;"+T;")+ x (-l)!m 
n=l 

with 

0368) 

Kmn 
= ${=$& - $(:)'C2[B;" - (-&;"I - E(T)' Cl[Bn - (-1)" B"]) 

mn 
(B69) 

Equations (B62) to (B65) can be solved simultaneously for cnJ ciJ 

g" andg'm With these known, equations (B6O) will furnish the values 

of s' nJ s;' SA"' s;"' and equations (B57) to (B59) and (B61) the values 

of the j mn' Equations (Bl6) will then give the stiffener stresses, 

equations (Big) to (B25) the plate stresses. 
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APPENDIXC 

ANALYSIS FOR THE CASE OF ONE STIFFENER 

WITH PRESCRIBED DISPLACEMENT CONDITIONS 

In this appendix the case of figure 4a is considered. In this 

case the edge x = 0 of the plate is assumed to be forced into a 

prescribed shape by means of an attached rigid stiffener (shown shaded 

in fig. &a) which also has this prescribed shape. The shape is defined 

by (a2u/ad~x=,J which is assumed to be a given function of y and 

expandable in the form of a Fourier series, equation (8)’ with known 

Fourier coefficients Kn (n = 1, 2, . ..) N). 

By virtue of the new conditions along the edge x = 0, certain 

quantities which were considered to be known or given in the previous 

appendix are now unknown. These are (a) the N Fourier coefficients 

Bn which, through the first of equations (4)' described the running 

tension Nx(OJy) acting mutually between the stiffener and the edge of 

the plate, and (b) the tension P 3 
(0) and P4(0) existing at the lefl; 

ends of the horizontal stiffeners. Because the StLffener along x = 0 

is now rigid, these N+2 quantities' needed in equations (B68) and (B69), 

are no longer known from the given external loading, but must be regarded 

as additional unknowns along with the cnJ c:, g,(l) g"m. 

What makes the present case still solvable in the face of this 

increase in the number of unknowns is the fact that there are exactly 

N+2 new conditions which must be imposed on the problem. N of these new 

conditions state that the curvature b*u/ay* along the edge x=0 of the 

plate, produced by the stresses in the plate, must, when expanded in a 
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Fourier series, be consistent with the known Fourier coefficients 

Kn (n=1,2,...' N) associated with the prescribed shape of the edge. 

The remaining two of the new conditions express the fact that the 

rigid stiffener at x=0 must be in equilibrium under the action of the 

LX4knoWIY- p3(“)J p4t”)J Nx(O,i) and the known Tl and Ml (see fig. 5). 

It should be noted that P3(0) and P4(0) are no longer appliedby an 

agent that is external to the entire structure, but are applied by 

the rigid stiffener along x=0. They are forces that now act mutually 

between the rigid vertical stiffener at x=0 and the two horizontal 

stiffeners. 

The explicit mathematical formulation of these N+2 new conditions 

and their incorporation into the analysis of the previous appendix will 

constitute the bulk of the present appendix. 

Formulation of Boundary Condition-of Prescribed Curvature 

Differentiating the last of the strain-displacement equations' (Bl), 

with respect to y, one obtains 

2 a7 aE 
au-,,- Y 
a;y* ay ax 

Eliminating the strains in terms of the stresses by means of equations 

(*I, and then the stresses in terms of the stress function through equations 

(B4), this becomes 

2 
aU = (c3 - c4) * - c* i??$ - ig 
ay2 axay 

Thus the curvatures a*u/ay* of the edge x=0 of the plate are 
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(3%) 
ay2 x=~ 

= (c3-c4) $39 
axay x=0 

- c,(3) 
x=0 

- (>)xzo 

Cc*) 

The terms on the,right-hand side of this equation can be expressed in 

series form with the aid of equations (19)' (B41) and (B44). The 

result is 

(6) 
N 

= 1 [(c,-C,) y f jm - C2 f dm 
aY* x=0 n=l 

- VA] sin y 

m=O m=O 
(c3) 

Comparing equations (~3) and (8)' one obtains the following N equations 

representing the condition of prescribed curvature along the edge x=0: 

M M 
K; = (C4 - C3) y x jmn - C2 c dmn - Vn (n=l,*,...,N) 

m=O m=O 
(c4) 

The unknowns jmn and dmn in this system of equations can be expressed 

in terms of the basic unknowns B' n' $,J c ;J $Jg;* To accomplish this 

it is first observed that equations (B57) and (B61) can both be 

represented by the following single equation, in which any undefined 

quantities are to be considered zero: 

jm = - d,Tm + 2 : [c,‘, 
abE - (-l)m c;J c* + g y [gm - (-l)"g;]c,? 

+ & $ (2)3[Bm" - (-l)nB;t']C2 
2-6 

mnb 
+ + (~)3[B;-(-l)mB;]Cl~ 

(c5) 

Furthermore' from equations (B46) J (Blk), (B50), and (B51), one obtains 

d 
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*mndmn 
= (.:)3 .Tm - g [~n-(-l)~c;][C,(~)~ + (C4 - 2c3) (:)*(y* I 

b#O 1 
b#O) 

+ p,3(T, CG - (-l)n %I Cl 

- z (5)* (y)* [B; - (-l)m B;] Cl 

+gnrrmJr b 5 a [B;' - J-l)nB;~,[@*cl+ (3*(c4 - 2c3)1 

cc71 

and these two equations can be represented by the following single 

equation in which, once again, undefined quantities are to be regarded 

as zero: 

Emndmn = (“)3Tm - + - (-l)m c~l[c,(~)* + (y)*(C4-X,)1 

- z (?%)* (y)* [B; - (-l)m B;]Cl 

+gmxnn b --g b [B;" - (-l)n Bb;"]$)* Cl + (y)* (C4 - 2c3)l 

033) 

Substituting from equations (C5) and (~8) into equation (Ck), and 

separating B' terms, one obtains II 
2 2-6 

Kf = -V’ - 
n n B;(y)* Cl f $-- ~(c3-c4G3* - C*ly) I("") 

m=O mn 
M 

+ 
c 

$433 [ (C3-C4) (?I* 

m=O mn 
2-6 

+cl~~~~(c3-c4~~~~2-c2~~~2~~~ :(gm(-l)ng;)+ +(T)(-l)"B;, 

2-6 
-c2(~)[Cl(~)*-C3(~)*][; y(Bm"--(-l)"B;")- + ~(+~l)mcn)]) 
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This expression can be solved for each unknown B1; in terms of the 

corresponding KnJ VnJ cAJ C~ and all the G and g"' with the following 

result: 

where yL1'J6nJ~& and v& are known quantities and are defined as follows: 

(l) = (T)* Cl f $- [ (c3-c4)(y)2 
22-6 . 

yn - c*(E) ] + (ClO) .' 
m=O mn 

M 2 2-6 
( Y)(-1WJ 

v'mn = $-[cl (y* *-'mo - c3(y21 y - 
a ml-l 

(Cl3) 

Thus the unknown Bn have, in effect, through equation (C9), been replaced 

by an equal number of known Kn. If the edge x=0 is forced to remain 

straight, then the Kn are all zero. 

Formulation of Boundary Condition of Equilibrium 

The normal forces acting on the rigid stiffener (see fig. 5) must 

be self-equilibrating. Therefore 

b 

P3W + P4W + 
I- 

N (OJY) dy = T1 X 
0 

and 
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b 

P4W + 
/ 

Tlb 
Y Nx@,Y) dy = 7 + Ml 

0 

Substituting 
N 

Nx(O,~) = 
c 

Bn sin (y) 

n=l 

and solving for P3(0) and P4(0), one obtains 

N 
Tl Ml P3(0) = - 1 $ Bn + 2 - b 

n=l 

N 

P4(0) = c (-P 
Tl Ml &Br;f~+~ (Cl5) 

n=l 

Thus, in effect, the unknown P3(0) and P4(0) have been expressed in terms 

of the known Tl and M 1 . 

Separating Bn Terms in R;fiR> R$:', R,','," 

Equations (Cl4), (Cl5), and (B69) can be used to eliminate P3(0), 

P4(0), and K from equations (~68). If the Bn terms are then written 

separately from the rest, equations (B68) become 

R’ = ,I’) + y’B’ 
n 

Rn= s( 

nn 

I, 2 ) 
n n - y;B; 

x3)+ N B'H Rm" = Sm c nmn 
n=l 

(~16) 

N 
(4) _ R;” = sm 

c (-1)" BI; Hmn 

n=l 
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where S(l), S(*), S(3) and S(4) n n m m are completely known loading terms defined 

as follows: 
M 

&I 
n = q + $[Pl~O)-(-l)nPl(b)],- --& B; + AIEIT Tl'l - c SE) 

m=l 

(Cl71 

S(*) = -&II + E n [P 2 (Oj - (-l)nP2(b)] + & B; + A2E2 y (&,B; + T;) 

,(3) 
m = g' -{-l)m E P3(a) 

M 
+ (-l)m sk) (~18) 

m=l 

+ & (B;" - B;") + A3E3 : (C3BI;I" + T;") 

(c19s) 
n=l 

s(4) = -Qll$ 

m 
- $(-l)m p4(a) - &(BA" - Bc') + A4E4 E (C$i" + Tz") 

N 
+ 

1 
Tl 2Ml (-ly%(-$ + 7 + -& (c*o> 

n=l 

with 

,(‘) = 1 Id T 
Em ab mn 

- ;(:)3 C IB’I! _ (- 
2 m l)nB;~~l + (- l)m ?=(y)3 Cl B'n" 

Cc=) 

H mJ 7; md 7; are also known quantities and are defined by the following 

equations: 
M 

1 
yn =-&+AE =c + 

11 b 3 c 
m=l 

cc** 1 
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M 
yp?&+ 

1 (-l>m & : (y)3 Cl 

m=l mn 

and 

Hmn = z& 
mn 

cc23j 

(~24) 

Revision of Equations (B62) to (B65) 

Substituting from equations (~16) into equations (B62) to (B65), one obtains 

'1; a,(n) - C: Sl(n) =.S {I, + y;B1l _ px,* f Em - (-Un %A 
n 

m=l Emn 

(n=l,*,...,N) (C*5) 

M 
-"I; Bl(n) + Ci a*(n) = SF) - y:Bn + E(y)* 1 (-l)m 

G - (-1)n &f 

m=l Emn 

(n=l,*,...,N) (~26) 

N 

i; cr3(m) - & S*(m) = Sm 
Cl - (,l)m ;; 

n=l 
BnHm - E(t)* 1 n Emn 

n=l 

(m=l,*,...,M) (C.27) 

N 

-gA S*(m) + z"m a4(m) = S(4) - m 1 t-1," Bn H + p)* f (-1)" ",', E 
- (-l)m;; 

n=l n=l mn 

(m=1,2,...,M) (~28) 

If equation (C9) is now used to eliminate the Bn, one obtains the follow- 

ing system,of simultaneous equations in which cn, czJ gm and gi are the 

only unknowns: 
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m=l (n = 1, 2, . . . . N) (C29) 

m=l (n = 1, 2, . . . . N) (C30) 

N N 
+ 

c ?l %-i - c ;II l-"" s(3) + 
N 6 

n=l n=l mn= m‘ c * Hmn 
n=l 'n 

(m=1,2,3,...,M) (c31) 

M M N 

-1 
-1 
gp sip + 

x ii; La4(d6mp - c Hm k pinI 
p=l p=l n=l 'n 

N N N 

-1 'cl (7 111 + 
iI 

-,I, (5 ,I 11 = $+) - 
nmn nmn m c (-l)$$ f&s, 

n=l n=l n=l 'n 

(m=1,2,3,...,M) (C32) 

where 

#I = Bl(n) -A f (-l)m VA 
'n m=O 

cc331 

9';" = pi(n) - --j$ f vk 
n m=O 
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M 
G” = a,(n) - -& 1 (-l)m v' 

'n m=O 

yri %l -r(l) %ln - 5 (Y) 2 1 E 
n mn 

mn 

I 

1 

N 
I-’ w = B2bNmp - 1 wHm -+J I.& 

n=l 'n 

r ,I, ,I mn = (-1)m E (2y2 & 
M 

1 
* - r(l) Hmn C(-l)pv;n 

n p=o 

(c33) 

(c34) 

cc351 

! 
Cc361 

and 
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u’ = 
mp 6mpP2b) - 1 (-IIn Hm k ‘I;~ 

n=l yn 

2 = I-1)" [z (E)2 & - Hmn +J f v;& u 
mn yn p=o 

(c37) 

M 
u 1111 = (-l)n [(-l)m E (T) 21 
mn 

E - Hmn +J 1 (-1)' vpn ] 
mn yn p=o 

Some uncoupling of unknowns in equations (C31) and (C32) can be 

effected by adding and subtracting equations corresponding to the same 

value of m. By adding, one obtains 

BY subtracting, one obtains 

M M N 

c 
,,,I + 

P mp 1 2 e" + P mp c 
'cl &- i +&=p; 

n 
p=l p=l n=l,3... n=l,3... 

(n odd) (n odd) Cc381 

M M N 

1 
,,,,11 _ 

P mp 1 S"Z + 1 
"A & - f $-f& = $ 

p=l p=l n=2,4... n=2,4... 
(n even) (n even) cc391 

where 

8' = 
w 

a3(m) - B2(m)lGmp - * I? 
n=l,3... yn 
(n odd) 

(c40) 

0” 
w 

= a4(m) - C 
n=l,3... 
(n odd) 
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& = (-1) m $ (T)2 < - -'rrr Hmn ;(-1)' ";n 

yn P=O 

I 
((241) 

N 
8 ;l = [a,(m) + P2(m)J smp - 2 1 Hmn k pbn 

n=2.4... yn 
(n even) 

(~42) 
N 

8 11 1, = 
w 

kx4(m) + B,(m)1 fjrnp 2 1 1 - 
Hmn muin 

n=2,4... 
(n even) 

1 
om 

= ,(3) + s(4) + 2 
m m 

(c43) 

‘1 = 
pm 

,(3) - sc4) + 2 N 
m m c & Hmn 

n=2,4... rn 
(n even) 

Equation (~38) involves only the odd subscript c' and c" n n' and equation 

(C39) only the even-subscript cn and c". 
n These equations may replace 

equations (Cgl) and (C32). 

Reduction in the Number of Simultaneous Equations 

Equations (C29) and (C30), written for the same value of n, can be 

solved for c' and G" in terms of all the g,), and i"m. The result is n n 
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Utilizing equations (C44) and (C45) to eliminate the 'n and ci 

in equations (~38) and (C39), and combining like terms, one obtains the 

following simultaneous equations involving only the -$ and g'm as unknowns: 

M N M N N 

c 
-1 
gp f@ 

1 + 

mp 
Jr 

p=l n=l,5... p=l n=l,3... n=l,3... 
(n odd) (n odd) (n odd) 

(c.46) 

M N 

1 "; re;; + 1 
p=l n=2,4... 

Jr,,) - f gl Yl; +ncJ4 
\cI,, 

p=l . . . 
*mp) = Pi -nz$4 

. . . 
(n even) (n Len) (n Len) 

(m = 1, 2, . . . . M) (~46) 

where 

'4 mnP - $;C;J - $Q;5,' (c47) 

(c48) 

The advantage of this reduction is evident: whereas the original simultaneous 

equations system, equations (C29) to (C32) requires the solution of 2N+2M 

simultaneous equations, the reduced system, equations (~46), contains only 
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2M simultaneous equations. Thus N may be taken arbitrarily large with- 

out increasing the number of simultaneous equations that have to be 

solved. 

Procedure for Use of Equations 

The procedure for using the foregoing analysis will now be summarized: 

Equations (~46) are first solved for the'g' and i". 
P P 

With these known, 

equations (C&4) and (C45) give directly the z,', and ci, and equation (Cg) 

the Bn. Equations (B60) then give the sn, s", sm", sl", and equations 

057) to (B49) and (B61) the jm. Finally, equations (B16) and (Big) to 

(B25) give the stiffener and plate stresses. 

Special Case: Symmetry About y = b/2 

When the structure and loading are symmetrical about the line 

y = b/2 considerable simplification of the foregoing equations is possible. 

The symmetry implies that A 
3 = $+, e,(x) = eb(x), Pi(O) = Pi(b), P2(0) = 

P2(b), P3(0) = Q(O), P,(a) = Q(a), N3(x) = 5+(x), q3(x) = -sq(x), Tl 

and M 1 = 0. It also implies that BA" = Bi", Qm" = - x", Tk" = Tk", and 

a3(m) = a4(m). In addition, as a result of the symmetry the following 

quantities all vanish for n even: Kn, Tmn, Bi, QJ, &II, Tn, Tn', and Vn. 

Consequently the following quantities vanish for n even: 

SC'), Sc2) (see eqs. 

dfm fet. (c4:)). 

(c17) and (~18)); En (es. fCll>); CA, C.: (eqs. (C34)), 

and the following equalities hold: 

,(3) = $+) 
m m (eqs. (Clg) and (C20)) 

0’ = Q” 
w mP (w. (c40)) 
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8 1” = et’ 1’ mP mP 

11 
pm =o [the 

(w - (~42) ) 

second equation of eqs. (C43)) “’ 

Therefore, equations (~46) become 

M N N 

c ‘i; + ge’ + w c Jrmp) = p; - c qmn 
p=l n=l,3... n=1,3... 

(n odd) (n odd) 

N N 

c - gye;; + c JI mpl = 0 (m = 1,2,.. 
p=l n=2,4... 

(n odd) 

Whence 
-1 - 11 gp = gp (p = 1, 2, . . . . M) 

and M N N c c If Jr,) 
p=l n=1,3,... n=1,3,... 

(n odd) 

(m = 1, 2, O.., M) 

(c50) 

(C51) 

From equation (C44) and (C45), together with (C50) and the earlier 

consequences of symmetry, there results 

C' =o n 
for n even, (c52) 

,'I 
=o 

n 
I 

and, for n odd, 
M 

1 Cl =- 
n CD c n 

f y&q + 5y; + 2 (#;"E in - PI;S;S& I 

\ 
p=l 
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Similarly, from equation JCg) 

B; = 0 for n even, (c54) 

and, for n odd, 

B,: = +) + -jg fpk g + -j-g f VA [CA - (-l)m Zn'] 
n n m=l n m=O 

(c55) 

The procedure for the symmetrical case can now be summarized as 

follows: Solve equations (C51) simultaneously for the 'g', then use 
P 

equations (C53) and $C55) t o compute the odd-subscript "1;, c'n and Bn. 

With these known, equations (B6O) will furnish the values of sn, si, 

s 1 ‘1. , si" (n odd), 

(1 odd). 

and equations (B57) and (B61) the values of the jmn 

Equations (Bl6) and (Big) to (B25), with the only odd values 

of n included, will then give the stiffener and plate stresses. 

Limiting Case of Large Stiffener Areas 

The case in which the stiffener cross-sectional areas are large 

compared with the plate cross-sectional area is of practical and 

theoretical interest. In order to study this case, let it be assumed 

that AIEl, A2E2, A3E3 and A4E4 will approach infinity while maintaining 

constant ratios with each other. Then equations (C29) to (C32) can be 

simplified through the following steps: First, divide equation (CZ'g) 

by Al+ (C30) by A2E2> (C31) by A3E3, and (C32) by A4E4 and rearrange 

them to obtain 

A' A" '. , .M 

'l;[l-ln + 
AYE1 
-1 + c;p 

n 
---11-]= &-+x 

AIEl 11 m=l 

(~56) 
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sq’ -'cl - 
nAE 22 

+ q1+ [g - (-1)" %I 5& 

M V M 

c ii; [smp +mp]-L - 11 

J?=l A3E3 c A3E3 p=l 

gp %lp 

N N 
1 +- 

c 
'; rrlf _ 1 

A3E3 n=l mn 
c 

A3E3 n=l 

M M 
1' -- 

c 
A4EJ+ p=l 

2; uAp + 
c 

9;: bmp + Ll 

p=l A4E4 

N N 
1 

c 
1 -- Cl u"' + - %l" 

A4E4 n=l n mn 
c 

,‘I 11 I’ = - 
(3 

A4E4 n-l n mn *4E4 

where 

A: = Bl(n) - 

with 

En = ;irr 1 “d_n y c3 

n m=O 

83 

(c57) 

(c58) 

(c59) 

(@a) 

(c56b > 

(~56~) 

(C56d) 

(C56e) 



un= i c M iJ!ELZf _ % f tml)m vk 
m=l Emn 'n' m=O 

N v =6 2 
mp c 

@?mf _ f Hm + &n 

n=l Emn n=l 'n 

$3) = s(3) + 
N 6 

m m c J% Hmn 
n=l 'n 

N 
$4) = $+) _ 

m m c (4 -& Hm 

(C57a) 

(C58a 1 

(c58b 1 

(C59a) 

rl=l 'n 

Examining the coefficients of the unknowns "A, c", -G and g in equations 

(C56) through (C59), it is observed that some of these coefficients are 

of the order of 1, while the others are of the order of l/(a2EllA1El). 

Retaining only terms of the order of 1 in these coefficients, one reduces 

equations (~56) to ((39) to the following system: 

'I; [l - In] = & - 
M 

El' -1 + 

11 n -n c 

m=l 

[&f - (-l)n &I yyJ y c3 

n 
wm 

‘;; 
-,‘I = - 

n A2E2 

84 

0351) 

(~62) 

(c63) 



Using equations (~61) through (~63) to simplify equation (C&I), the 

latter becomes 
A n Cl =- A lTl (~64) 

where 

An=* K',- 
n 

Thus a solution 

the unknowns "A, ck, 

AIEl 
M 

c 

g(3) $+) pl 
- 5" 2' + A E 
A2E2 n n 

[AL - (-l)n .x-l mn nR c ) 
1 1 m=l A3E3 A4E4 F b 3 

n 

(c64a) 

[eqs. (~61) through (~64)) is obtained which gives: 

-$, -G explicitly without the necessity of solving 

simultaneous equations. This solution can be seen to be correct to terms 

of the first degree in l/(a3E11AlEl). With En, etc., known, the 

procedure for computing stresses is the same as described earlier for 

the general case. 

A solution correct to terms of the second degree in l/(a3EllAlEl) 

can be obtained by the following procedure: First substitute from equations 

(~62) to (~64) into (C57) to obtain 

,‘I 

n= 
1 

E 
c; 

- + 
'n [1+-l A2E2 

A2E2 
M 

1 
-x 
A2E2 m=l 

An pllll 1 

A2E2 AIEl n 

Expanding 
'n l/h + ml 
22 

in a power series of the form 

-z-l- 1 E+f 2 3 
1+c 

-E + ... 
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and neglecting the terms which are powers of l/(a31ZllA2E2) higher than 

second in equations (~65) gives 

,'I 
c; 

=-+ 

Y; 
n A2E2 (A2E2 J2 

Cc661 

where 
A M 

Y; = -U,[; + A2E2 j+ #A" - A2E2 
11 m=l 

i# f&) k& 

(c66a) 

By further application of this technique, using the first order approxi- 

mations given by equations (~61) to (~64), the second order approximations 

for gm and gi (from eqs. (~58) and ((39)) can be expressed by following 

equations: 
,(3) y1” 

-+*+ 
3 3 (A;E3J2 

$4) 

Sri=“-+ 
yil” 

A4E4 -(A4E4 )* 

(~67) 

(c68) 

where M N 
-(3)+ ,A" = -vmsm 

(p#m) 

M $4) 

+ A3E3 
-EL rll 

p=l 
$+E4 mp 
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M 
-(4) 

g(3) M N 
Yi' = -vmsm + A4E4 1 

P+ 
cc 

s(4) 1 

A3E3 
PH m 

p=l p=l n=l 
r(l) ‘Ib 

(p#d 
n 

fC68a) 

Substituting from equations (C66), (c67), and (C68) into equation (c56), 

one obtains 

C’ = n 

M $3) 
+ 

lx rc& + 
m=l 33 

c; 
- [-- 

A2E2 

,A" 

(A3E3) 
2) 

11 
+ n (,y, ) IE 2 rl 

22 

. 

g(4) 

- (-lY?& 

A" 
Al 
AIEl 

yil” 
(A4E4 ) 2)3 

1 A, ‘1 

qyp3+ $J$lI (~69) 
n 

Expanding 
A' 

l/[l - fn + -&I 
11 

in a power series of the form 

1 1 1 
l- =:- -= L(, _ i' $. ,-I2 _ ,I3 + mos) 

K+E 1-K l+c' 1-K 

where G E' = - 
1-K 

and neglecting powers of 3 l/la E A E 11 1 1 ) higher than second in equation 

(C69) gives 
A 

Cl n 1 Y' 
=-+ _ n 

n AlEl 1 - =n 
(AlEl)2 

(c70) 
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where M 
1 

$3) 

yA=-r --=. A'(' 1 -vA'AE nn l-- -n n 11 c 
P- 

n m=l A3E3 n 

M 543) 

+ AIEl c 
[AL- 

m=l 

A3E3 c-1)" $$ AZ + (A~E~)~~ [ "" 
m=l (A3E3J2 - 

r 11 r” 
1 'n +-AEA'-='+AE 'n A" 

Y; 
c_ _ 1 - En 1 1 n A2E2 -n 1 1A2E2 

n (AlEl)2 
. :A2E2 ) 

2 1; 

fC7Oa) 

Equations fC66), (C67), (C68) and(C70) constitute a solution correct 

to the second degree in l/(a3EllAlEl), in which the necessity of solving 

simultaneous equations is once again obviated. 

Illustrative Thermal-Stress Problem 

In order to illustrate the details involved in the application of 

the foregoing analytical results, a particular example will be considered 

which has the following characteristics: 

a) Edge x=0 kept straight; therefore the Kn in equation (8) are all 

zero. 

b) Plate isotropic, therefore elastic constants are given by equations 

(3). 

c) Plate and stiffeners have the same Young's modulus E. 
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d) Al = A2, .A3 = A4. 

e) No force loading. 

f) Stiffener temperature constant at the value To. 

g) Plate temperatures T(x,y) symmetrical about both centerlines 

(x = a/2, y = b/2) and varying sinusoidally in accordance with the 

following equation: 

T(x,y) = To + 0 sin (9) sin (y) 
(0 I Y 5 b) 

(C71) 

where 8 is a constant, representing the temperature rise of the plate 

center relative to the stiffeners, and P and Q are odd integers. 

h) Plate and stiffeners have the same coefficient of expansion CL. 

These are the only specializations to be presented later, the problem 

was further specialized to the case of a square plate (b=a), with all 

stiffeners identical (Al = A2 = A3 = A4), and subjected to a "pillow- 

shaped" temperature distribution (P = Q = 1). 

Reduction of general equations to special case. - From the given 

temperature distribution one obtains the following plate and stiffener 

thermal strains: 

e 
X = eY = 

CX[T~ +. 8 sin 9 sin ?&!.X] 
b 

e. 1 = cxTo i = 1, 2, 3, 4 

Therefore 

a2e d2e 
-+ + 3 = -@ p)* + p$y2] Plix 

aY 3X 

sin 7 sin 9 

(C72) 

cc731 

(c74) 
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and 
el(d - ey(O, y) = CIT - mo = 0 0 

e,(y) - e,(a,y) = 0 

e3W - ex(x,O) = 0 

e4(x) - ex(x,b) = 0 

(C75) 

Equations (C75) reflect the absence of any temperature discontinuity 

between stiffeners and plate in this example. Substituting from equations 

(C74) and (C75) into the right-hand sides of equations (lb), (16), and 

x23), one obtains 

T; = T; = ,A" = ,;'I = 0 (~76) 

and 

Tm = + Q2B2) 

v’=&% BnQ 
n 

(C77) 

(C78) 

where 
B = a/b cc791 

Due to the absence of prescribed forces, the following quantities are 

all zero: 

P,(0),P,(b),P2~0)~P2jb),Pjo,Pqla) (fig. 4a) 

Tlj"l (fig. 4a) 

B'$Bm",B;" (see eqs. (4)) 

(-y, &II, Ql&l) (-ql (see eqs. (6)) 

(It should be noted that q(O), P4(0) and Bn do not necessarily vanish.) 

It will be convenient to introduce additional dimensionless parameters 

A 1' h2' and C, defined as follows: 
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Al = 4ah/(n2Al) = 4ah/(1~~A,) 

b = 4bh/(z2A3) = 4bh/(n2A4) 

C = A3/Al 

and to note, from equations (B51) and (3), that 

Emn 
= (n4/a4Eh)(m2 + n2B2)2 

(c&l 

(~81) 

Because in this example the structure and loading are symmetrical 

about y = b/2, the simplified system of equations, namely equations 

(C50) through (C55), will be used for the determination of the El 
P' 

'cl ,,I and B' n' n n' The quantities needed in order to use these equations 

will now be evaluated. 

Substituting from equations (5), (C77), (c78), and (~81) into 

equations (ClO) to (Cl3), one obtains 

+l) = 
M [i2 

-(n2B2/aEh) y 
+ (2+v)n2B21(2-Sio) 

n 
[i2 + n2B212 

(ClO') 
II k 

i=O 

[P2 + (2+v)Q2B21 

[P2 + Q2B2] 

%ln = - 
2nB2[m2 + (2+v)n2B21 

r( [m2 + n2B212 

-16 3 nQ 
(ClS') 

cc=') 

v& = 
nB[n2B2 - vm2](2 - srno) 

.[m2 + n2B212 
(C13') 

Substituting into equations (C17) to (C24) from equations (C77) and 

(~811, one obtains 
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s(1) = fj @ 
n nQmEh ' 

rP2 + Q2B2] 

de) = 6 n nQ 
c&Eh '@ 

(P2 + Q2B2) 

s(3) = 6 mp aBEh PQB 
m 

(P2 + Q2B2) 

s(4) = 
m %lP c&Eh pw 

(P2 + Q2B2) 

Y; = 1 

i=l [i2 + n2B212 

y; = (-Qi 

i=l Ci2 + n2B212 

Hmn = 2n3B3 2 
n[m2 + n2B212 nJrB 

(Cl7’ > 

(~181) 

(Cl9,’ 1 

(c20 ’ ) 

(c22 ’ ) 

CC23 ’ ) 

(C24 t ) 

Substituting from equations (B67), (.ClO!), (Cl3'), (C22') and ;C23’) 

into equations (C33), one obtains 

where @i through $"'I 
m are numerical constants defined as follows: 
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g; = 1+ 2 f [3 +i2,212 

i=l 

M 
22 {hl+4vn B + 2h n4B4 1 x 

1 

i=l 
[ i2 + n2B2 I2 ' M 

+ 
i2+(2+v)n2B2](2-Eio) 

c 
{n2B2-vi2j(2-Eio) 

h2B2 
i=O [i2 + n2B2'12 

[i2 + n2B212 
(C33’a) 

@; = 2 f”: [i2 ‘-l)~2;;12 
i=l 

+ 
M 

{A. +4vn2B2 1 
1 

+ 2h n4B4 
1 c i=l[i2+n2B212 1 M (-l)i[n2B2 - + 1 vi2]$2-Sio) 

4n2B2 
M [i2+(2+v)n2B2](2-Sio) 

c 
i=O [i2 + n2B212 

i=O [i2 + n 222 B 1 
(C33’b) 

M 
A (1 + 2n4B4 1 c 

(-1p 

[i2 2 2 +nBl 2) 
+ i=l 

4n2B2 
M [i2 

c 

+ (2+v)n2B2](2-gio) 

i=O [i2 + n2B212 

M 

c 
i=l 

[n2B2 - vi2](2-Sio) 

[i2 222 +nBl 

(C33’c) 
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i=l 

Alll + 

+ 

i 
2 

[i2 + n2B212 

M 

2n4B4 c 
(-l)i 

[i2 + n2B212 
? 

i=l 

4n2B2 
M [i2+(2+v)n2B2] (2 - Eio) 

c 
i=O [i2 222 +nB] 

(-l)i[n2B2-vi2](2-6io) 

[i2+ nB 1 222 
i=O 

(C33’d) 

Substituting from equations (ClO') (Cll') fCl7'), (~18'), (C22'), and 

(C23') into equations (C34), one obtains 

where <'n and <'n are known quantities given as follows 

PQB 

[P2 + Q2B2] 

4vQ2B2 P(l+ 7 + 2Q4B4 
1 

M [i2 
Q3B3 1 

+ (2+v)Q2B2](2 - Lo) 

i=O 
[i" + Q2B2j2 

CC34 'a> 

!+v)Q2B2j 1 J 
[ic+QcBcIc [P' + Q2B21 

M P{l + 2Q4B4 c 
,'I = PQB + i=l 

n [P2 + Q2B2J 7 M [i2 
Q’B3 c 

+ (2+v) Q2B2](2 - ko) 

i=O [i2 + Q2B212 

(c3’+‘b) 

Substituting from equations (~81), (Cl2'), (C22') and (C23') into equa tions 

(C35L one obtains 

94 



5’ pn 
= AIE r' 

pn 
(c35 ’ 1 

5 ;5n = AIE ," 
pn 

where r' 
pn 

and I" 
pn 

are known quantities given by the following equations: 

-11 
E 

pn = 

M 
[p2+(2+v)n2B21(h + 4vn2B2+2?yn4B 7 1 

1 [i2 2 2 +nB] 2l 
i=l 

2n2B [p2+n2B212 
M [i2 

c 

+ (2+v)n2B21(2 - 'i0) 

i=O [i2 222 +nBl 

A 
1 n2B3 

2[p2 + n2B212 

(c35’a) 

M 
[p2+(2+v)n2B21 h (1 1 + 2n4B4 c 

(-+ 

i=l 
[i2 2 2 +nB] 2) 

2n2B [p2+n2B2J2 
M [i2+(2+v)n2B2](2-Eio) 

c [i2 + nB ] 222 
i=O 

(-1)' Al n2B3 

2[p2 + n2B2j2 

(C35'b) 

Substituting from (~81) into the third and last of equations (B67), 

one obtains 

A2 4 
N 

c 
2 

a3(m) = A3E + A3E T B n 

n=l [m2 222 +nB] 

and 
A N 

fi2(m) = A3E -$ B4 c (-1) n n2 

n=l [m2 + n2B2j2 

therefore 

a3 b-4 - p2(m) = A3E(1 + h2B4 
N 

c 
n=1,3,... 

n2 
2 2.2) [m2 + nB 1 

(~82) 

Substituting from equations (c82), (ClO'), (Cl2') (C24') into the first 

of equations (C40), one obtains 
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N 

0' 
n2 

mp 
= A3E [l+ h2B4 c [m2 + n2B212 

3s 
mp 

n=l,3... 
(n odd) 

N 

-2A3Eh2B 
4 

c C 
n2 [p2 + (2+v) n2B2] 

n=l,3... [m2+n2B212 
[p2+n2B212 

M [i2+(2+v)n2B2](2-Sio) 

c 
i=O [i2 + n2B212 

(C40’) 

Substituting from equations (~81), (ClO'), (Cl3'), (C24') into equations 

(C41),one obtains 

(C41') 
q'& = All Fk 

where 

-sin = 

+Lm2 
(m2+n2B212 

(-l)m klm2 

[m2+n2B212 

+ 
h l[ 

n3B3 - "-a 
[m2+n2B212 3 

IIB 
M [i2t(2+v)n2B2] (2-Eio) 

c 
i=O [i2 222 +nB] 

+ 

M 

c 
i=O 

M 

c 
i=O 

Substituting from equations (ClO'), (Cll'), (Clg'), 

the first of equations (C43), one obtains 

[n2B2-vi2](2-eio) 

[i2 + n2B212 

(C4l'a) 

(-l)i[n2B2-vi2](2-6io) 

[i2 + n2B212 

(C41'b) 

(C20'), (C24') into 
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pm ’ = ckmh @@ 

4pc-k2+(2+v)Q2B?+l Q3B3 

2PQB [p2+ 
~~~~ 1 -[2 222 

Cm +Q 1 B 1 
-&B 5 

[P2+Q2B2]- [i2+(2+v)Q2B2](2-eio) 
I 

i=O 
li2 + Q2B212 

(C43’ 1 

Substituting from equations (C33’), (C35 '), and (C41') into equation 

(C47) one obtains 

Jh 
AIEIK'&p;" cln - jP$"J - -~(cjy Sin - $Q 5'1,) J 

mnp = - 

(C47’ 1 

Substituting from equations (C33’), (C34’), (C41') into equation (~48), 

one obtains 

Substituting into equation (C51) from equations (C40'), (C43’), (C47’) 

and (~48'), one finally obtains the following system of simultaneous 

equations for the un?snown 52 

-G (CjaIl”ii;lhn - ipyg - yy&cp;“~& - g$k) N 
+ C[l + h2B4 c n2 

n=l,5... c(iJ; iq' - 7J; Jg") n=l,5.. 2 222' (m+nB ) 

N 

-2h,B4C c [ 2n22 2 2 - 2x1 
[m2 + (2+v)n2B2] 

(m +n B ) n=1,5... n B 2 222 [m+nB ] 
M [i2+(2+v)n2B2](2-Eio) 

c [i2 2 2.2 )G(d 
i=O +nB] 
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M N 

-1 c t 
[-yf&ypn - 

P p$“J - -Y&pq;“r’, - $?$“,,I 

p=l n=l,5... c cog;" - g$Jp 

N 

-2h2CB4 c [ 
n' 

n=l,5... [m2+n2B212 -& 
[p2+(2+v)n2B2] 

[p2+n2B2 I2 
M [i2+(2+v)n2B2](2-sio) 

c 
i=O [i2 + n2B212 

(1 - Ernp) G(P) ; (C5l’ ) 

(m = 1 2, . . . . M) 

where 

G(P) = & 

Procedure for numerical solution. - It will be observed that equations 

(C51') are in a suitable form to be solved by the Gauss-Seidel iterative 

procedure (ref. 6), since the equation for any particular value of m 

has G(m) as its only unknown on the left-hand side and all the G's except 



G(m) as unknowns on the right-hand side. Solution by the Gauss-Seidel 

procedure involves the initial assumption that all of the G(p) on the 

right-hand side of the m=l equation are equal to zero. This permits the 

m=l equation to be solved for an approximate value of G(1). Substituting 

this approximate value, together with G(3) = G(4) = . . . = 0, into the 

m=2 equation permits that equation to be solved for an approximate value 

of G(2). Continuing in such a fashion it is possible to obtain a set 

of approximate values for G(1) through G(M). This set is called the 

first-iteration solution to the system of equations. A second-iteration 

solution is obtained in the same manner as the first except that the 

initial values of G(2), G(3), etc. are those given by the first-iteration 

solution. Third and higher iterations can be performed in a similar way. 

As one generates more sets of solutions to the system of equations 

there should appear a general observable trend whereby each individual 

G(p) tends to approach a certain value. The calculation is stopped 

when changes in all the G(p) values appear to be negligible (less than 

.OOOOOl in the present calculations) from one iteration to the next. 

With the G(p) known, equations (C33') (C34'), (C35'), and (C53) 

yield M 

(n/4NnQbl$$7;"/B + k2~"$"1+2~ [C$;"g;n - $$",I k G(P) 
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where 
“11 

C'(n) = x 

11 

C"(n) = & 

With cn, ci and g'm known, equations (C&O') to (Cl3'), and (C55) 

yield: 

B'(n) = - 

where 

6 prr 
nQ 

[P2+(2+v)Q2B21 _ 1 
[P2 + Q2B2] 

M [i2+(2+v)Q2B2](2-eio) 
Q2B2c [ 

i=O 
i2 + Q2B212 

M 

M 

4 c 
m[m2+(2+v)n2B2] 

m=l [m2+n2B212 
G(m) 

+ 
M [i2+(2+v)n2B2](2-6io) 

n 
c 
i=O [i2 + n2B2)2 

c [n2B2 - vm21(2-6mo) 

m=O 
[m2 + n2B212 

[C'(n) - (-l)mC"(n)l 
- - 

M [i2+(2+v)n2B2](2-Eio) 
c 
i=O [i2+n2B212 

B'(n) = --..!& 

0355 ’ > 

Note that 

C(m) = gm/(mEh) 

C'(n) = cn/(&Eh) 

C"(n) = Ci/(c&Eh) 

With B,[1 as known, from equations (Cl4) and (Cl5), one obtains the 

.following tensions at the left ends of the x-wise stiffeners where they 

join the rigid vertical stiffener: 
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N 

p3(o) = p4(0) = -CHA3Eh2 1 & B'(n) (cnr) 
n=1,3.. . 

With the coefficients ci, c: g', g"m and BA as known quantities, equations 

(B60) will furnish the values of s;, s", sg', si', and equations (B57) 

to (B59) and (B61) the values of the jm. Equations (B16) will then 

give the stiffener force, equations (B19) to (B2.T) the plate stresses. 

One obtains the following equations for these quantities. 

N 

P,(Y) = eAp c CC'(n) - vB'(n)] sin (y) (0 < Y < b) 
n=l,3... 

(c83) 

N 

PrJY) = QA1" c C"(n) sin (y) (0 < Y < b) 
n=l,3.;. 

(~84) 

M 

p3w = P,(x) = eA3FLY c G(m) sin (y) (0 < x < a) 
m=l 

(~85) 

G(m,n) sin (7) sin (y) 

m=l n=l,3... 
(0 C x < a) 

(0 < Y <b) 

ww 

M 

(Nx)Fo = (NxjFb = ~@Eih 1 G(m) sin (y) 
m=l 

(0 < x < a) 

(~87) 

I M N 

N 
Y 

= c%Zh 1 1 C(m,n) sin (+) sin (y) (0 C x < a) 
m=l n=l,3... (0 <Y <b) 

b-3) 



N 

(Ny)x,o = @fi c C'(n) sin (y) (0 <Y <b) 
n=l,3... 

N 

(NY,,, = QB= c C"(n) sin (y) @<Y-J) (w> 
n=l,3... 

xy = -aBEh{f f J(m,n) cos (y) cos (y) +f N w cos (?I I 
&l n=l,3... n=l,3... 

tier.e G[m,n), C(m,n) 

as follows 

(0 < x 5 a) 

(0 2 Y 5 b) W91) 

and J(m,n) are known quantities and are defined 

G(m,n) = 2n2B2 

3x[rn2 + n2BF12 
b[c'(n) - (-l)m C"(n)] + 2nB2 G(m)) 

+ 2m[m2 + 2n2B2]B.'(n) _ Q2B2 

n[m2 + n2B212 (P~+Q~B~) 
6 
mP 'nQ 

C(m,n) = 2mB'(n) c m2[m2+2n2B2] _ lI P2 
n2B2fi [m2+nG212 - (p2+~2~2) 6,p6nQ 

+ 2m2 

,[m2+n2B2J2 
tdc'(n) - (-l)m C"(n)] + 2nB2 G(m)] 

J(m,n) = 2nB 
n[m2+n2B212 

(n2B2B'(n .I - 3[C'(n) - (-l)"C"(n) 

+ (P2 
P&B 

+ Q2B2) 'mP "nQ 
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And from the first of equations (4), one obtains the following 

running tension between the rigid stiffener and the plate edge at x=0: 

N.&Y) = f B; sin (y) = c@Eh f B'(n) sin (y) 

n=l,3... n=l,3... 

(0 < Y <b) (~84) 

Numerical results for hl # 0 and h, f 0. - The numerical procedure c 

and equations described above were applied to the special case of a_ 

square plate (B = l), with all stiffener areas equal (Al = A2 = A3 = A4), 

a pillow-shaped temperature distribution (P = Q = 1), end Poisson's 

ratio V equals to 0.3. The assumption that B = 1 and all stiffener 

areas are equal implies that hl = A2 (see eqs. (C71)), and the common . 

symbol h will therefore be used for both hl and h2. 

The results obtained for the stiffener tensions and plate stress 

are shown in dimensionless form in figure 6 for A = 2.O.and figure 7 

for A =l.O. In general, stresses were computed at x/a and y/a interval 

of 0.1. 

Limiting case of large stiffener areas. - For the case in which the 

stiffener cross-sectional areas are very large compared to the plate 

cross-sectional area, equations (~60) to (~63) may be employed as approxi- 

mations which become more and more accurate as the ratios of stiffener 

to plate cross-sectional areas approach infinity. The quantities 

En and Zn needed in these equations are defined by equations (c56e) 

and (C56f) which can be reduced to the following expressions if use is 

made of equations (3), (ClO'), and (Cl3'): 
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= z-v 

-n 

M 

c 

(n2B2 - vm2)(2 - Ejrno) 

Iti= (3 f n2B2)2 

M [m2+(2+v)n2B2](2 - emo) 

c 
m=O (m2 + n2B2)2 

M 

c 
=’ = -y m=O' 
-n -E- 

c 
m=O 

(-Urn 
(n2B2 - vm2)(2-Smo) 

I* b2 + n2B2)2 

Cm2 + (2+v)n2B21(2 - Smo) 

b2 + n2B2)2 

(C%‘e) 

(c%‘f) 

Substituting from equations (ClO'), (Cll'), (Cl2'), (Clg'), (C20'), 

.(c24’) and ((34') into equations (~61) and (c62), one obtains 

where 

(~61.9 

(~62') 

(Pz:2B2) 
+ 

(1 + 2Q4B4 f [m2 i-;$;2,2 1(p’p2 + (*+“) Q’23 - PI 

m=l [P2 + Q2B2] 

M [m2+(2+v)Q?S21 (2'Smo) 
Q3B3 1 

m=O [m2 + Q2B2J2 
(C61’a) 

2pI~P2+(2+Y)Q%321 _ llc &B -- 
[P2 + Q2B2] lm2+Q2B2 12 Q;B~ ’ 

M [i2 + (2+v) Q%‘l (2-Sio) 

c 
i=O [i2 + Q2B212 (C62’a) 

'104 

- -.~__-_ 



With cg,-&and < known, cn (eq. (0)) can be reduced to the following 

expressions if use is made of equations (3), (ClO'), (CG?'), (C34'), 

(c~zL'), (c62'), (c56’e), tc56’f) 

'cl h "ii 1 CYe = 
="qIy 1- zn -g c' 6 

n n nQ 

where 

vpQ n2 [p2 f (2+v)Q2B21 
C 

[P2 + Q2B2] 
- 11 

M [m2+(2+v)~2B2](2-Smo) 
Q2B2 c 

m=O 
[m2 + Q2B212 

(C6O'a) 

c* = -g's 
M [m2+(2+v)n2B2](2-Emo) 

n n nQ 
- ;I, -16 

G[m2+(2+v)n2B2] 

n -n nQ 2 22.2 J/(X 2 2.2 I 

m=l. [m+nB ] m=O [m2 + n B J 

(C60'b) 

with 

P&B 

(P2+Q2B2) - 

(l+2Q4B4f ---!I- -- 
m=-1[m2+Q2B2]2 

]$P2+(2+v)Q2B2] 
[9+Q2B2] 

- 1) P 

M- 2-- 22 
Q3BT c 

Lrn +(2+v )Q B I(2 - Emo) 

[m2 + Q2B212 
Cc@ 

m=O 

‘cl 

Substituting the above expressions for in, ci, -$ and.;; into equation (C55), 

one obtains 

where 

Bn = &03-i g'n 6 
nQ 

+ c&Eh hlB; (c55” 1 
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= M [Q~B' 

"il 1 
- vm2] (2-Cmo) 

m=O [m2+Q2B212 

M [m2+(2+v)Q2B2](2-6,0) 

(l-'n)w 1 
m=O 

rm2 + &282]2 

,,$P2+(2+v)Q2B2] 

M[P2 + Q2B2] 
- 11 

Q2B2 1 
[m2+(2+v)Q2B2](2-6,0) 

m=O Cm2 + Q2B212 

(C55”a > 

and 

1 

I-B 
M [m2+(2+v)n2B2](2-Em,) 

c 
m=O [m2 - n2B212 

M [m2+(2+v)n2B2]& 
I%1 

c* n 
-; 1-_ 

M [n2B2-vm2](-2-Smo) 

Cm2 + n2B212 c 2 222 
m=l n m=O [m+nB I 

=I! 
rCC 

-6 n M (-l)m [n2B2 - vm2](2-6mo) 

nQ 4 c [m2+ nB ] 222 I 
m=O (C54"b) 

With the Bn known, equations (Cl&) and (Cl3) yield the following tensions 

at the left ends of the x-wise stiffeners where they join the rigid 

vertical stiffener, when terms of degree higher than 1 in h 1 and A2 are 

neglected: 

P3(0) = P4(0) = -cSA Eh 6 n 
3 2 nQ 4Q (Cl5") 

With the coefficients cn, ci9 g'm and g'm known, the stiffener 

stresses and the plate stresses are given as follows: 

N 

p,(y) = &AIEhl c vB+n] sin (y) 

n=l,3... n 
@<y-d 

Cc851 
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r 
!i 
; ’ 

IV 

P,(Y) = c&AIEhl c SnQ 2 sin (y) @<y-d 
n=l,3... 

(~86) 

M B"=% 
P,(X) = P,(X) = CSA3Eh2 1 4m sin (y) (0 < x < a) 

m=l 

M N 
Nx=cBEh 1 SnQ & sin (y) sin (y) 

m=l n=l,3... 

M BJf=s 
(Nx)y,o = (NxJFb = mEhA 1 4m sin (y) 

m=l 

N 

"Y = mEh h- 
6 nQ Cm sin (y) sin (y) 

m=l n=l,3... 

(Ny)x=o = -cmh f 
n=l,3... 

M N 

(“,,x=a = -ctah (1 1 EnQ jmn cos (y, cos 
m=l n=l,J.-. 

n=l,3.,. 

(c87) 

(0 < x -C a) 

(0 < Y < b) 

((38) 

(0 < x < a) 

(c89) 

(0 < x < a) 

(0 < Y < b) 

(w) 

(0 < Y < b) 

(C9l) 

(0 f x 5 a) 

(0 5 Y <b) 

cc931 

where 
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2mQEs25,‘, 

2 222 (1--,)[m.+Q B ] 

2m[m2 + 2Q2B2]B' 
+ n 

.[m2 + Q2B212 

2 2 
c = B, 2m 1 [rn '(m +2Q2B2) P2 

- - 
n 2 

11 
Qn B2 2 222 [m+QB J srnp (P2 + Q2B2) 

2m3 =Ct n 

&rr'(l - En)[m2 + Q2B212 
cc94 1 

2m2B=c' 2Q3B3 B' 
: 
J,= PQB 6 + n 

(P~+Q~B~) mP n2[m2+Q2B2]2(l-En) 
+ n 

.[m2 + Q2B212 

With the Bn known, the first of equations (4.4) yields the following 

running tensions between the rigid stiffener and the plate edge at 

x = 0: 

N 

Nx(O, y) = c@Eh c 6 nQ EA sin ,(y) @<y-Q) 
n=l,j... 

cc95 1 

Numerical results for limiting case of large stiffener areas. - The 

numerical results for h 1 = h2 = i -+O for square plates (B=l) with all 

stiffeners identical, subjected to a pillow-shaped temperature distribution 

(P = Q = 1) are presented in dimensionless form in figures 8 and 9. 

The former represents for v = 0.3, the latter for v = 0. 

108 



APPENDIX D 

ANALYSIS FOR THE CASE OF TWO OPPOSITE STIFFERERS 

WITR PRESCRIBED DISPLACEMENT CONDITIONS 

This appendix considers the case of figure &b, in which the stiffeners 

at x = 0 andx = a are bent to prescribed shapes defined by known values 

of Kn and K'n in equations (8) and (9). Correspondingly, the Fourier 

coefficients B' n and B;, which describe the running tension between 

the stiffeners and the plate, are now unknowns. In addition the loading 

resultants Tl, Ml' T2 and M2 constitute four new knowns, supplanting 

P3(0), P4(0), P3(a) and P4(a), which are now unknowns. Further intro- 

ductory remarks can be made for this case which are obvious generalizations 

of those in appendix C. 

Formulation of Boundary Condition of Prescribed Curvature 

The boundary curvatures a2u/ay2 of the edges x = 0 and x = a of 

the plate are (see appendix C) 

h2U 
(--;;I 
ay x=0 

= cc3 - c4)(& 
axay2 x=0 x=0 x=0 

a2u (,) 
ay x=a 

= cc3 - c$&) 
(Dl) 

axay2 x=a x=a x=a 

The terms on the right-hand side of these equations can be expressed in 

series form with the aid of equations (19),(20), B41), and (B44). The 

result is 
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(a2u) 

N M M 

= 1 [(C,-C,) T 1 jm - C2.x dmn - Vi] sin y 
ad x=0 n=l m=O m=O 

M M 

[ (c4-c3) y 
1 (-Qmj, - C2 c 

(-l)md,, - ""1 sin y 
x=a n=l m=O KFO 

(D2) 

Comparing equations (D2) with (8) and (g), one obtains the following 2N 

equations representing the conditions of prescribed curvatures along the 

edges x=0 and x=a: 

M M 

Kn = (C4 - C3) y c jmn - C2 c dmn - Vn 
m=O m=O 

M M 

K"n = (C4 - C3) T c (-l)m jmn - C2c (-i)md,n - VL 

I-IF0 m=O 

(n = 1, 2, . . . . N) 
(D3) 

The unknown jmn and dmn in these equations can be expressed in terms of 

the basic unknowns BA,Bi,cA, c;,g', gi (see appendix C). 

Substituting from equations (C5) and (~8) into equations (D3), and 

separating B1; and Bi terms, one obtains 

2 2-6 
Kn = -VA-B;(y) Cl - c2(~)21(+) 

M 

+B;(~)2Cl~(-l)m+[(C3-C4)(~)2 - c,(y21 (,) 
2-6mo 

m=O mn 

M 
+ 

c 
-ii- (T&:) [(C3 - C4)(y)2 

llF0 Emn 
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-c,@ xi;, m-- 
2-6 2 2 m(Btn ( l)s;lt).. T +;-(-l)mc;)] 

K; = -V;-B;(y)2 Cl f (-l)m $- 
Ili=O mn 

c (c3-cq .)(yJ2 
2 2-6 

- c2(y) I(+3 

3 M 
+B"& Cl 1 + t cc,-c,) cyj2 

2 2-6 
- c21y I(+) 

m=O mn 

M 
+ 

1 
i-l)m $ (Tm (2, [ (C3-C4 )(3’ 

m=O mn 

2-6 
-(T)C2[Cl(y)2-C3(;)2,[$ 2 (B$-(-l)nB;“)- + +;-(-l)mc”)] 

These equations can be solved for each unknown BA and B"n in terms of the 

corresponding KA, K", CA, c", and all the g', gi. Rearranging equations 

@‘4), one obtains 

M M 
B’$‘) 

nn 
- B$) = sL1) + 1 PI;mcg;n-(-l)n~l+~v~[cr; - (-1>m ,;I 

m=l II-F0 

B’Y(~)-B+) = EC21 
nn nn n 

[&L(-&‘I + f (-g$& - (# ,;I 
m 

(1) yn , P& and VA have been defined already in appendix C; where 
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$2) = (y)2 Cl f g C(c3-c4) (y2 2-6 

n - c21y21 (y=, 
IU=O mn 

WI 

M 
&) 

n = -Kil - VA + c +Tm(~)[(C3-C4)I$)2 
m=O mn 

&) = -K”-V” + 
c 
M (;l)m 2 2 

n n n 
m=O mn 

4$3(C3-C4)(~) - C2(=3 1 

_ c,(:,21 y $ : [B;” - (-l)n B;"]] 

03) 

Solving simultaneous equations (D5) for BA and B:, one obtains 

where 

Dn = (~$2))~ - (T:'))~ @lo) 

m==l m=O 

m=l m=O 
(D11) 

and 
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M 
D”,70)&2)+r(1) 

nn n n ~(-l)m~~~~-(-l)n~~~~l)~(-l,mv~,~~~-(-l,m~~l 
m=l m=O 

III=1 m=O 
(D=) 

Thus the unknown Bn, B"n have, in effect, through equations (Dg), been 

supplanted by an equal number of known K1; and K:. If the edges x=0 

and x=a are forced to remain straight, then the KA and K'n are all zero. 

Formulation of Boundary Conditions of Equilibrium 

The normal forces acting on the rigid stiffener at x=0 must be self- 

equilibrating. Therefore equations (Cl4) and (Cl5) of appendix C apply 

also in the present case. They are: 

N 
Tl M1 P3(0) = - 1 $ Bn + 2 - b 

n=l 

N 
Tl Ml P4(0) = x(-l)n $ Bn + 2 + b 

n=l 

Similarly, the normal forces acting on the rigid stiffener at x=a must 

be self-equilibrating, i.e. 

b 

P31a) + P&(a) + 
/ 

Nx(a,y) dy = T2 
0 

b 

I- 

Tb 
P4(a) . b + Y Nx(a,y) dy = $- + M2 

0 
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By substituting 

N 

Nx(a,y) = Bl sin (7) 

n=l 

and solving for P (a) 
3 

and P ‘(a), 4 one obtains 

N 

P3(a) = - c 
T2 M2 $B;+m-~ 

n=l 
(nl5) 

N 
T2 M2 P4(a) = I(-1)n $ Bi + 2 + b 

n=l 
&m 

Thus, through (D13) - (Dl6), the unknowns P3(0), P4(0), P3(a) and P4(a) 

have been expressed in terms of the knowns Tl, Ml, T2 and M2. 

Separating BA and Bi Terms in RnJ Rz, RI", R"" 111 

Equations (D13), (Dlb), (D15), (Dl6), and (B69) can be used.to 

eliminate P3(0), p,(O), P3(a), P4(a), and Kmn from equations (B68). If 

the BJ and Bz terms are then written separately from the rest, 
II II 

equations (B68) become 

RI = SC51 + y’B’ - y;B; 
n n nn 

(6) R"n = Sn - y;Bl; + y;“B; 

(D17) 
N N 

Rm" = Sm 17) + B'H 
c nmn- c 
n=l n=l 

N 
(8) _ 

'ill" = 'rn c 
(-l)nB1;Hmn + 

(-l)m B'nHm 

n=l 
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where SF), S(6), S(7), S(8) n m m are completely known quantities defined as 

follows: 
M 

s(5) = s + 
n $cPl(0) - (-l)nPl(b)] + AlEI.? T; - 1 SE) 

m4 (~18) 

M 
SW = ._ 

n % + $[P2(0)-(-1)"P2(b)] + A2E2 y T"n + c(-l,m S$ 
m=l 

(D19) 

S(7) = &16” + -%-(B;lf _ B”“) + A E %i (C B”’ + T;“) 
m m 33 a 3m 

020 > 

n=l 

SC81 = -$;II” - $--(B;” - B”“) + A4E4 = (C$;” + T;“) 
m m 

N 
+ 

c 
Tl 2Ml (-1)nsE) a +-+ T2 x - (-lJrn [a + %I (D21) 

n=l 

with 

sc2) = -& ( & T 
Em ab mn 

_ E(y)’ c2[BA”- (-l)n Bllll]) 
m 0322 ) 

H m' 711, and 7: have been defined already in appendix C; yn" are also 

known quantities and are defined by the following equation: 

M 

T-l” = &+AE = c + 
3 

22 b 3 c 
g- $ (Y) Cl 

m=l mn 
(D23) 

Revision of Equations (B62) to (B65) 

Substituting equations (Dl7) into equations \(B62) to (B65), one 

obtains 
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m=l mn 

(n=1,2,3,...,N) (~24) 

2M 
-c;pl(n) + cia2(n) = S(6)-7'nBn + 7n"BII+f (y) x (-l)m %l-(-l)n% 

n E 
m=l mn 

(n=1,2,3...,N) (D25 > 

(m=1,2,3,...,M) (~26) 

N N 

--~S2(m)+&'$x4(m) = Si8)-c (-l)nBn,H,, + x(-l)"" BiHm 

n=l n=l 

+ p, 
2 N 

c 

,q-l)m;; 
(-'Jn n E (m=1,2,3,...,M) 

n=l mn 
(D27) 

Equations (D24) to (D27) can be used to obtain a system of 

simultaneous equations in which "A, c:, G, & are the only unknown 

coefficients, by eliminating Bn and B"n with the aid of equations (Dg). 

The resulting system of simultaneous equations is: 

M 

(n=1,2,...,N) 

m=l 
CD281 

(n=1,2,...,N) 
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M 

1 

NH 
i; b3bN mp- c 

P=l n=l 
7 P&CY$((-1)P+(-l)m) - YAl)Q+(-l)m+p) I? -&;dg 

P=l 

N N 
+ 

c 
Cl $3) _ (4) 
nmn c 

c; r* 
n=l n=l 

(m=1,2,...,M) (DX) 

M M 

-1 
-1 Qp g' -I- 

1 i~b4(m)6mp- 
N Hmn 

I_ ybn CYF)((-1)P+(-l)m)-YZl)(P(-l)m+p) II 
p=l F-1 n=l 'I 

N 

-1 
(-Qn "A r2' + f (-1)n;; I-E) 

n=l n=l 

N 
=s(~)- m c 

(-1~~ !Lf ~~(2)6(2) _ y~~~~~~l~~~l~my(~),(~~+~~l~~y~~~~~~~l 
n n n n n n 

n=l n 

(m=1,2,...,M) @31) 

where 9:') through #(4), c(l), cc2), EL), e:), -c2), r:), and rc4) are n n n mp 
defined by the foILlowing equations: 

#(‘I = a,(n) - +-[y11r2)-,fty0]f (-l)mv 

M 

n nn n nn + j$- cy~Y~l’-Y;Y~‘l~ vh 

m=O n m=O 
M M 

($w 
n = BL(n) + +~Y~1’-Ypl~ (-1)mvk - &cY;Y~)-Y;Y;l)l XI& 

n n=O n m=O 

(D32 > 
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M M 
(j(3) 

n = Bl(n) - ~[y~y~)-y~~~yy~(-l)m v& + $cY;Y~~)-Y~"Y~)l~ "k 
n m=O n m=O 

M 
($4) = a2(n) + 5 [Yir, 0) 

n n 
-r;~fe,]f (-1)mvk - $[r;;y~Ly~~~y~~) ,x VA 

m=O n m=O 

&l)= ,(5) 11 2 
n n -YJL Jl 

#) CD32 > 
,+-g- ’ 2 

17,Yi ) 
n 

- 71;Yh1'1 

&2)= t# 
&I 

11 1 
n n +e [YnYA ) - yyyp ] 

n __ 
033 ) 

&’ = (-1) ’ mYnYf) pk - n D” Y’74l+ l)m r;;Yyl~ YffYC2)P mn - 
n Dn n Dn 

mn+ nn 

Dn 
- pi)' $ 

mn 

yflyt2 I”& ylly~l’pk 
2) = (-1)m n n 

y~llytl)~~ ,I, 2 ‘“& Yn Y( ) 
_ 

Dn 
-(-l)m n Dn mn + Dn - L?(X) El 

2 ( )” 

Dn n n mn 

034 > 

l?g)=P2(m )srnp-f (-1)" + I.$ (Yf)[(-1)P+(-1)ml - YLl) [l + (-l)m+pl J 
n=l n 

r(5) = p)2$ - +-A {y;2) f 
M 

mn mn n 
C(-l)p+(-l)m3 $-Yil) 1 [l+(-l)m+pJ Vbnl 

P=O P=O 

$4) = (-1)m p)2 $L _ 
mn mn 

+ iY$ [I+~-l~~+~lv~n-y~l~~~~-l~Pi(-l)ml $1 
n p=o P=O 

(D35) 

Some uncoupling of unknowns in equations (D30) and (D31) can be 

effected by adding and subtracting these two equations corresponding to 

the same value of m. By adding, one obtains 
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p = s(7)+5p)+* 
m m m 

n=l,3..:1 

p = s(7)-,(8)+2 N Hmn 
m m m Ix D [pg@q~~&) 

n n n -(-l)m~~l)s~)+(-l)m~~)g~l)] 

n=2.4.?. I 

041) 

Equation (D36) involves only the odd-subscript cn and c;, and equation 

4D37 > only the even-subscript cn and ch. These equations may replace 

equations (D30) and (D31). 

Reduction in the Number of Simultaneous Equations - ---__ 

Equations (D28) and (D29), written for the same value of n, can be 

solved for c' and G" n n in terms of all the & and g. The result is 

M 
Cl n 

= iL(pf)~4)+p$jj~)+~ ($p&~L~y~~)) [$ - (,l)n -11 
n p=l 

gp J 1 

(~42) 
M 

where Qn = ~~~)+4)-+2)+3) 
n n n n 

Utilizing equations (D42) and (D43) to eliminate the 'cl and G" in 
n n 

equations (D36) and (D37) and combining like terms, one can obtain two 

sets of simultaneous equations involving only the -$ and -< as unknowns: 

(m=1,2,...,M) 049) ) 
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(m=1,2,...,M) (D49) j 

CD511 

Whereas the original simultaneous equations system, equations (D28) 

to (DSl>, requires the solution of 2N+2M simultaneous equations, the 

reduced system, equations (D49), contains only 2M simultaneous equations. 

Thus N may be taken arbitrarily large without increasing the number of 

simultaneous equations that have to be solved. 

Procedure for Use of Equations 

The procedure for using the foregoing analysis will now be 

summarized: Equations (D49) are first solved for the 'g' and in. With 
P P 

these known, equations (D42) and (D43) give directly the G,', and ci, 

and equations (D9) the Bn and B"n. Equations (B60) then give the sn, 

l, t II Sn' sm , s "', m and equations (B57) to (B59) and (B61) the jm. Finally, 

equations (Bl6) and (B19) to (B25) give the stiffener and plate stresses. 

Special Case: Symmetry About x = a/2 and y = b/2 

When the structure and loading are symmetrical about both centerlines 

1, x = a/2 and y = b/2, then Al = A2, A3 = A4, Pi(O) = Pl(b 1) = ~'~(0) = P2(b 
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p3@) = P3(a) = p4(0) = P4(a)j q3(x) = -Sq(x), qlIY) = -%(Y), e,(y) = 

e,[y), e,(x) = e4(x), VA = -V", K; = -Ki. In this case, one may set 

B1l =B:=o 
for n even \ 

'cl = -11 C =o for n even n 
<=;=. for m even 

) (D52) 
B1; = B; for n odd 

Cl = -,,I for n odd n n 

%l=% for m odd / 

We can simplify the simultaneous equations (D49) as follows. From 

equations (D5) and (D52), one obtains 

$)+2f 

M 

B1l =p$ P&-G + 2( z vk) CA1 
n n m=l,3... m=l,3... 

(D53) 

(n=1,3,...,N) 

Equations (D24) to (D27) are replaced by 

(n=1,3,...,N) 

N N 

i$[CL3(m)-@2(m)] = SL7)+2 x B,iHm, - i(:)' x 
C 
> (D55) 

n=1,3,... n=l,3... mn 

(m=l, 3,... ,M) 

Substituting from (D53) into (D54), one obtains 
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M 

(n=1,3,...,N) 

where 
2<YA - Yi, 

M 

pin = al(n) - Bib) - 
y(1) - yC2) x "An 
n n m=l,3... 

5, = sp) + (y; - y;> y($lJ 

n - YF' 

5 
ar,: - r;, 

pn = y(l) _ y(2) ‘An 
_ ; (y)2 +L 

n n pn 

CD561 

XD56a 1 

(D56b) 

(D56~) 

Substituting from equations (D53) and (D56) into equations (D55), one 

obtains 

M 

1 
g;(@r;lp+ f #%I"& =S;')+f Hm$$-$ -+f& 

p=1,3... n=l,3... n n=l,3... 'n "n n=l,3...n 
(P odd) (n odd) 

(~1,3,...,M) 057) 

where N 
8' 

w 
= b3(mbP2tm)lSmp - 4 x 

Hmn 
ro_r(2) ‘IA 

n=l,3... n n 
(D57a) 

4H M 
0 " = $ (y2 & - l)m(2) x "An 

mn 7 -Y n n P=L3--* 
@5P) 

The number of equations in the system (D57) is (M+1)/2, regardless 

of the value selected for N. 

Equations (D57) can be solved simultaneously for 2' p (p odd). With 

-"s as known, equations (D56) and (D53) will give sn and Bn directly 
gP 
(n odd). With these known, equations (B&I) will furnish the values of 
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Sr;) s$ SA”, si”, and equations (B57) to (B59) and (B61) the values of 

jma Equations (B16) and (Bl9) to (B25) give the stiffener and plate 

stresses. 

Limiting Cases of Large Stiffener Areas 

Five different sets of limiting conditions will now be considered, 

all for the case in which the structure and loading are symmetrical 

about the lines x = a/2 and y = b/2. In terms of the notations defined 

by equations (C80), these limiting conditions are: (1) h -0, 2 hl finite; 

(2) h2*, followed by Al-O; (3) hl-0, A2 finite; v) hl0, 

followed by h2eO; (5) hl = h2 = h, followed by h-0. The reduction 

of the general equations to these limiting cases results in considerable 

simplification; in particular it is no longer necessary to solve simultaneous 

equations, except for condition (3). Conditions (2), (4) and (5) which 

are physically identical also turn out to be mathematically identical. 

The details of the reduction follow. 

Condition (1): h2+0 while hl maintains a finite value. - Use 

equations (D53) to eliminate the Bn in equations (D55); and then divide 

equations (D55) by A3E3, and rearrange them to obtain 

M 1 Z" N -1 

x 
2.5s P mp 

+L)=rn+ 
*JE3 A3E3 Lx 

C n V" - 
mn A3E3 

(m=l, 3... ,M) 

p=1,3... n=l,3... 
(D58) 

where 
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Z” = St7) + 2 N 
&) 

H 
m m c 

n=l,3... 
(D58b) 

N 

V& =2Hm 2 
y(1) - 7(2) c (D584 
n n p=l,3... 

Substituting from equation (D56) into equation (D58) to eliminate in, 

and then examining the coefficients of the unknown -G in equation (D58), 

it is observed that some of these coefficients are of the order of 1, 

while the others are of the order of 1/(a3E11A3E3). Retaining only 

terms of the order of 1 in these coefficients, one reduces equations 

(D58) to the following system: 

ii; (m = 1,3,.. .,M) 

(DSY) 

Substituting from equation (D59) into equation (D56), one obtains the 

following equation for Gn 

M N 

"I;=k 'L+p-F35pn [&+&,F3+11 
- , ,.. 1 . , . 

($60) 
(n=l,3,...,N) 

Thus a solution (eqs. (D59) and (Da)) is obtained which gives the 

unknowns im and cn explicitly without the necessity of solving simultane- 

ous equations. This solution is seen to be correct to terms of the first 

'in 1/(a3EllAlEl). With 'n and -G known, then equation (D53) furnishes 

the values of Bn, and the procedure for computing stresses is the same 

as described earlier for the special case of symmetry about x = a/2, 

y = b/2. 
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Condition (2): h2-0 with 'hl finite,.followed by Al--O. - Equations 

059) and (Da) can be used as a starting point for this case. It is 

first noted, from equations -(D56a), (B67), (C22), and (C23) that 

$$, = AIEl[l - Z; + -] 
AIEl 

061) 

where 
M 

2' = 2 
-n 

nrrc 
7(l) _ ,@I b 3 c 

V’ 
mn 

n n m=l,3... 

(D61a) 

,w = 4 M L!?E& _ 

n a 1 
m=l,3... Emn yc 1147(e) 

If & 5 (y))bll(f $1 
n n m=l,3..mn p=l,3... 

(D61b) 

Substituting from equation (D61) into equations (D59) to eliminate $,, 

examining the coefficients of the unknown -G in these equations, and 

retaining only terms of the ,order of 1 in these coefficients, one reduces 

equations (D59) to the following system: 

Z; 
g = - 

A3E3 
(m = 1, 3, . . . . M) (~62) 

A similar reduction of equation (D60) can be effected with the aid of 

the following form of g 
pn' 

obtained from equations (D56~), (C22), and 

(C23): 

5 pn 
=AIEl[% P' 

b 3 pn h AtEl pn 
+ - J2)] (D63) 

n n 

where 
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(D63a 1 

Substituting from equations (D61) and (D63) into equation (D60), examining 

the coefficients of the unknown "A, and retaining only terms of the order 

of 1 in these coefficients, one reduces equation (D60) to the following 

equation: 

zil ‘cl = - 
n AIEl 

(n = .L 3, . . ., N) 

where 
M 

(D64a) 

with 
@Cl) = 1 _ Z" 

n n (D64b) 

Equations (D62) and (D64) are the pertinent results for this limiting 

condition. 

Condition (3): Al+0 while h2 maintains a finite value. - This limit- -- 

ing case (ACED and A2E2 approaching infinity) can be studied with equations 

057) as the starting point. These equations are written in the following 

form, in order to be more readily suitable for solution by the Gauss-Seidel 

iteration method: 

N 

&[63& + 
lx k 

n=l,3..? 

"&] = ,i7) + t Hm & - f + 82 

n=l,3... 'n "n n=l,3..n 

+ f iq4 i (;y2) I$ - f + “&I 
p=l,3... n=l,3.?n -7n n=l,3..? 
(P # m) 

(m = 1, 3, . . ., M) (D65) 
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Substituting from equations (D61) and (D63) into (D65), then examining 

the coefficients of the unknown -G in equations (D65), and retaining 

only terms of the order of 1 in these coefficients as AlEl and A E 22 

approach infinity, one 

system: 

N 
- P 

reduces equations (D65) to the following 

G %-I+ 2 L 
n=l,3... 

N 
= Sc7) + H 

m mn 
n=l,3... 

& N 5 0” 
n 

1 
mn 

,w _ 7w - AIE;[l - !;I 
n n n=l,3... 

M 
+ 

c 
p=l,3... 
(P # m) 

(m = 1, 3, . . . . M) (D66) 

The solution of equations (D66) can be effected by the Gauss-Seidel 

iterative procedure (see appendix C - Procedure for numerical solution.). 

Using equations (D53) to eliminate Bn in equations (D54), and then 

dividing equations (D54) by AIEl, and rearranging terms, one obtains 

057) 
in which the -& are defined by equations (D66). As Q-0 (AIEl+m), 

equations (D67) are simplified to the following: 
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where G(l) n is defined by equation (D64b) 

With & and "A known, through equations (D66) and (D68), equations 

(D53) will give the values of Bn. From that point on, the procedure for 

computing stresses is the same as described earlier for the special case 

of symmetry about x = a/2 and y = b/2. 

Condition (4): kl-+O with h2 finite, followed by h2d0. - Dividing 

equations (D66) by 

F&, it is observed 

1 and terms of the 

A3E3 and examining the coefficients of the unknowns 

that these coefficients contain terms of the order of 

order of l/(a3EllA3E3). Retaining only the terms of 

the order of 1, one reduces these equations to the following system: 

Z; 
i; = - 

A3E3 
(D69) 

where Z" m is defined by equation (_D58b). Substituting from equation (D6Y) 

into equation (D68), one obtains 

zli Cl =- 
n AIEl 

(D70) 

where Z' n is defined by equation (D64a). 

With gm and 'n known from equations (D69) and (D70), equation (D53) 

will then furnish the values of Bn. The subsequent procedure for comput- 

ing stresses is the same as described earlier for the special case of 

symmetry about x = a/2 and y = b/2. 
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Condition (5): Al = A2 = A, h-0. - This case can be thought of 

as one in which all stiffener cross-sectional areas are approaching 

infinity simultaneously while maintaining fixed ratios with respect to 

each other. For the study of this case we return to equations (D54) 

and (D55), but rewritten as equations (D67) and {D58), respectively. 

Examining the coefficients of "1; and -& in equations (D67) and (D58), 

it is observed that some of these coefficients are of the order of 1, 

while the others are of the order of l/(a3EllAlEl). Retaining only 

terms of the order of 1 in these coefficients, one reduces equation 

(D67) and (D58) to the following system: 

M 

c 
P"llul <I 071) 

m=l,3... 

Z; 
2; = - 

A3E3 
(D72) 

Using equation (D72) to simplify equation (D71), the latter becomes 

&n C’ =- 
n AIEl 

(D73) 

where Z' n is defined by equation (D64a). 

Thus a solution (eqs. (D72) and (D73)) is obtained which gives the 

basic unknowns G,', and -g explicitly without the necessity of solving 

simultaneous equations. This solution is seen to be identical to those 

obtained for conditions (2) and (4). 
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Illustrative Thermal-Stress Problem 

A particular example will be presented to illustrate the details 

involved in the application of the foregoing analytical results, this 

example has the following characteristics: 

a) Two opposite edges of x = 0 and x = a kept straight; therefore 

the Kn and K'n in equations (8) and (9) are all zero. 

b) Plate isotropic; therefore elastic constants are given by 

equations (3). 

c) Plate and stiffeners have the same Young's modulus E. 

d) Al = A2, A3 = A4. 

e) No force loading. 

f) Stiffener temperature constant at the value To. 

g) Plate temperatures T(x,y) symmetrical about both centerlines 

(x = a/2, y = b/2) and varying sinusoidally in accordance with the 

following equation 

T(x,y) = To + 8 sin (F) sin (y) 
(0 5 x 5 a) 

(0 99) 

where P and Q are odd integers. 

h) Plate and stiffeners have the same coefficient of expansion O. 

These are the only specializations to be employed at present. However, 

in the numerical example, to be presented later, the problem will be 

further specialized to the case of a square plate (b=a) with all stiffeners 

identical (Al = A2 = A3 = A4 = A), subjected to 'a "pillow-shaped" temper- 

ature distribution (P%+l), and having v = 0.3. 

Reduction of general equations to special case. - From the given 

temperature distribution, one obtains the following equations for the 
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known coefficients in terms of temperature distribution and the 

coefficients of expansion (r (see appendix C): 

2 
Tm = -'mP'nQ Cxe (;) [P2 + Q2B2] 

VA = -v; = QQ EL 6 
a nQ 

c ) D75 

076) 

Due to the absence of prescribed forces, the following quantities are 

all zero: 

Pl@), P&b), P2(0), P2(b) (fig. 4b) 

Tl' Ml, T2, M2 (fig. 4b) 

B 1 1' m , B;" (see eqs. (4)) 

&;I, &II, (gll, q1 (see eqs. (6)) 

(It should be noted that P3(0), P3(a), Pq!O), P4(a), Bn and Bi do not 

necessarily vanish.) 

Because in this example the structure and loading are symmetrical 

about both centerlines, x = a/2 and y = b/2, the simplified system of 

equations, namely equations (D56) and (D57) will be used for the 

determination of the '1; and @;m with odd m and n. (It should be noted 

that c,', = c"n for n odd, g; = gi for m odd, cn = c"n = 0 for n even, 

and ;' = ," 
m = 0 for m even). 

m With En and g' known, equation (D53) 
m 

will furnish the values of odd subscripted Bn. (It should be noted 

that Bn = B"n for n odd, and Bn = B"n = 0 for n even). Equations (D57) 

must first be solved simultaneously for Gi The quantities needed in 
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order to use these equations will now be evaluated. Substituting from 

equations(3) and @81) into equation (D6), one obtains 

7(2) = - 
M (-l)i[i2 + (2+v)n2B2](2-eio) 

n b2B2/aEh) 1 _ h h 2 
i=O [iz + nzBz ] 

From equations (ClO') and (D6'), one obtains 

1 
y(1) - y(2) 
n n 

= - aEh 
M 

4n2B2 
1 

[m2 + (2+v) n2B2] 

m=1,3... h2 + n2B212 

Substituting equations (3), (~81), (D75) and (D76) into equation (D7), 

one obtains 

&I 
n 

= ~ % ,[P2 + (2+v)Q2B2] 

[P2 + Q2B2] 
- 11 6 

nQ 

W’ > 

(D77) 

(D7') 

Substituting into equations (D18) and (D20) from equations (D74) and 

(D75), one obtains 

s(5) = fj 
n nQ 

QQm pQB 
[P2 + Q2B2] 

(~18') 

s(7) = PQB 
m 

Emp cxmh 

[P2 + Q2B2] 
(D20') 

Substituting from equations (B67), (D77), .(C22'), (C23') and (C13'), 

into equation (D56a), one obtains 

where 

(D56'a) 
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M 

ifn = 1 + hl c 
m2 

[m2 + n2B212 m=1,3?.. 

M 

[v + hln2B2 c 
1 

b2 + n2B2)2 
1 

+ m=l,3... 
M 

c 
[m2+(2+v)n2B2] 

m=l,3... Cm2 + n2B212 

M 

c 
IIF1,3... 

[n2B2 - vm2 1 

[m2 + n2B2]' 

(D56"a) 

Substituting from equations (D77), (Dl8'), (C22'), ,(C23') and (D7’) 

into equation (D56b), one obtains 

where zn are known quantities defined as follows 

M 

P$ + Q2B2 
1 c 2 212 2 

(i +QB > 
1 Pg+ggl - 11 

i=l,j... 

d 
[i2 + (2+v) Q2B2] 

i=l,3-.. [i2 + Q2B212 
(D56"b) 

Substituting from equations (~81), ((X.2'), (C22'), (C23') and (D77) 

into equation (D56~), one obtains 

5 = 
pn 

A EC 
1 pn 

(D56’c) 

where r 
pn 

are known quantities as expressed by the following equations: 
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spn = 

M 
B[p2+(2+v) n*B*][v+hln*B* x 

1 

(i* i=l,3..; + n*B*)* 
1 

M 
(p* + n*B*)* 

1 
[i*+(*+v)n*B*] 

i=l,3... [i*+n*B*l* 

h n2B3 1 

(p' + n*B*)* 

(D56”~) 

Substituting from equations (c82), (C24'), (Cl2') and (D77) into equation 

@57a), one obtains 

N 
63' 
mp 

= A3E (11 + h2B4 1 Cm* n=l,3... 
+ nZ12)21 'mp 

3 . . . 

[ 
n* 

(m*+n*B*)* 
- Ll[P2 

n2B4 
+ @+v) n*B*l 

M 
(p* + n*B*)* E 

ii*+(*+v) n*B*] 

i=l,3... [i*+n*B*]* 

) (D57’a) 

Substituting from equations (c~I), (Cl3'), (C24'), and (D77) into 

equation (D57b), one obtains 

Ok = AIE g: (D57’b > 

where 3" are known quantities and are defined as follows 

Alm2 Y[ 
n3B3 

,,I +- (m*+n*B*)* [n2B2 - vi*] 
ml-l= [m*+n*B?]* M 

x 
[i*+(*+v)n*B*] i=l,3... [i2+n2B212 

Ii6 

i=l,3... [i2+n2B2]* 
iD5 7”b > 
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Substituting from equations (C24'), (D7'), (D77), (D20'), (D56'a), (D56'b), 

@56’c), (D57'a), and (D57'b) into equation (D57), and substituting 

i'p = g'p Cl?, one obtains 

( f 
r 
T g& + cl + A2B4 f 

n=l,3...n n=1,3... 
(m2 + ;;B2)2 1 C 

N 

-A2B4C 
c 

n=l,3... 

c 
n* 

(m*+n*B*)* 
- &lb* + (2+v) n*B*] 

M 1 

(m*+n*B*)* 
c 

[i* + (2+v) n*B*] 

i=l,3... [i* + n*B*]* 

G(m) 

= emp 
nAl Q B 

4(P* + Q*B*) 

P+- - &B 
nA Q3B3 (m*+QTB*)* 

,( [P2+(2+v)Q2B2] 

1 +- [P* + Q*B*] 
- 11 

4m M 

c 
[i* + (2+~) Q*B*] 

i=l,z... [i* + Q*B*]* 

- f [ f ( F 3k- A2B4C 
p=1,3... n=l,3... n 

[ 
n* 

(m*+n*B*)* 
- 1-][m2+(2+v)n2B2] 

n2B4 
M 7' * 

[p* + n*B*)* c 
[i*+(*+v)n*B*l 

i=l,3 [i2+n2B212 

. (1 - Ernp) E, G(P) 057’ > 
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I’ 
b 

where 

G(P) = & and C = A3/Al 

In the solution of this system of equations the Gauss-Seidel 

iterative procedure can be employed (see appendix C - Procedure for 

numerical solution). 

After equations (D57') have been solved, the G(p) (therefore g;) 

willbe known. The cn can then be determined from equation (D56). 

Substituting from equations (D56'a), (D56'b) and (D56'c) into equation 

D56), and substituting c' = n one obtains 

rrh M 
C(n) = 1 

4gn r-a 
tn EnQ + -L- c 

pn 1-53 p=1,3... 
G(P) P r,, (D56’ > 

where 
C’ 

C(n) = & 

With C(n) and G(m) known, substituting from equations (D77), 

\D'," 1, CC=' 1, and (Cl3l) into equation (D33), and substituting 

Cl = 
n and gm = &g&y, one obtains 

B(n) = - 

,~~P*+(*+v)Q*B*] _ 1) 
[P*+Q*B*] M 6 

4Q2B2 1 
[i*+ 2+v)Q*B*] 

nQ 

2 222 
i=l,3... [i+QB 1 

M 

1 

+ 

M 

c 

22. m[m*+(2+v)n B ] 
2 222 G(m) 

m=l,3... [m+nB ] 

M 

n [i2+(2+v)n2B2] 

i=l,3... [i* + n*B*]* 

[n*B* - vm*] 
C(n) 

3[ 
m* + n*B*]* . . . 

.c i*+ *+v) n*B*l 

3 
Ci* + Q*B*]* . . . 

CD53 ’ ) 

i=l, 
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where 
, 

B(n) = & 

With BI; as known, one obtains 

N 

p3(0) = p4(0) = -0SA3Eh2 c & B(n) CD781 
n=l,3... 

from equations (D13) and (Dlk). 

With C(n), G(m) and B(n) now known, equations (B&I) will give the 

values of the odd-subscripted s' 11 s"' s"" n' 'nJ m ' m ' and equation (B61) the 

values of jmn (m and n odd). Equations (B16) and (Big) to (B.25) will 

give the stiffeners and plate stresses. One thus obtains the following 

results: 

p,(Y 

N - 
,> = P,(Y .) = OAIE)r z CC(n) - vB(n)] sin (y) 

n=l,3... 

(0 < Y <b) (D79 > 
M 

P,(x) = P,(x) = 0A3Frx 
c 

G(m) sin (y) (0 < x < a) 

m=l,3... (@JO) 

M N 

Nx=cyBEh c c G(m,n) sin (y) sin (y) 

m=l,3... n=l,3... 

(0 < x < a) 

@<Y-J) (DW 

M 

(Nx&.eo = (Nx$.eb = CYM~ 1 G(m) sin (y) (0 < x < a) 

lrFl,3... 
(~82 > 
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N 
Y = ClsEh f f C(m,n) sin .(y) sin (y) 

m=l,3... n=1,3... 

(0 < x < a) 

(O<Y-) CD831 

(N,,xzo = (NY&, = ciem f C(n) sin y+) (O<Y-) 
n=l,3... 

084 > 

N = -ckeEh 
xy f f J(m,n) cos (y) cos (y) 

m=l,3... n=l,3... 

(0 <_ x 5 a> 

Co<y_<b) CD85 > 

where G(m,n), C(m,n), and J(m,n) are known quantities, and are defined 

by the following equations: 

G(m,n) = &n*B* 

fl[m*+n*B*]* 
[m C(n) + nB*G(m)l 

+ 4m[m*+ 2n2B21B n) 

n[m* + n*B*]* 
Q*B* 6 6 

(p* + Q*B*) mp nQ 
w36) 

. < - 11 - P2 6 6 
(P*+Q*$ > mp nQ 

2 
+ 4m 

x[m*+n*B*]* 
[m C(n) + nB* G(m)] m37) 

J(m,n) = 4nB 
lr[m*+n*B*]* 

h*B*B(n) - m2 C(n) - mn~~ Gim)J 

+ PQB 6 6 
(P*+Q*B*) mP nQ 
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And from the first two of equation (4), one obtains the following 

running tensions between the rigid stiffeners and plate edges at 

x=Oandx=a. 

Nx(O,y) = Nx(a,y) = f 

N 

Bn sin ( b =)=Qm c B(n) sin (y) 

n=l,3... n=l,g... 

(0 < Y <b) 

Numerical results for Al and h2f. - The numerical procedure 

and equations described above were applied to the special case of a 

square plate (b=a), will all stiffeners identical (Al = A2 = A3 = A4), 

and Poisson's ratio V equal to 0.3. The above assumption implies B = 1 

and h = h 1 2' and the common symbol h will therefore be used for 

both hl and h2. 

The results obtained for the stiffener tensions and the plate 

stresses are presented in dimensionless form in figure 10 for h = 2.0 

and figure 11 for h = 1.0. The values of M and N employed in the 

calculation are indicated on the figures. In general, stresses are 

computed at x/a and y/a interval of 0.1. 

Limiting case of large stiffener areas, condition (1). - Five 

different limiting conditions were considered in the earlier analysis. 

However numerical calculations were made for only two of these, conditions 

(1) and (2). The equations needed for condition (1) will now be presented. 

Substituting from equations (D7'), (D20'), (D77) and (C24') into 

(D58b >, one obtains 
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II 

Z; =cteEh -_, 
[ (P*+Q*B*) mP 

c+ _ 2-1 c~P2+(*+v)Q~2’ 
b +Q B ) 

- 1J P 
QB [P* + Q*B*] 

M 

c 
Ii* + (Z+V) Q*B*] 

[i* + Q*B*] 2 
i=l,3... 

(D58’b > 

Substituting from equations ((X3'), (C24'), Ic81) and (D77) into (D58~), 

one obtains the following equations for V" : 

-L] 
n*B* 

M 

c 
[n*B*- VP*] 

[p2+ nB 1 222 
p=l,3... 

M 

1 
[p2+(2+v)n2B2] 

p=l,3... [p* + n*B*]* 

+ 

Then substituting fromequations (D58'b), (D58'~), (D56'a)and (D56'b) into 

(D59), one obtains 

r2; = OS3 &- G(m) 
A3 

(D59 ’ 1 

where the g(m) are completely defined by the following equation: 

G(m) = *@ 6 
(P*+Q*B*) mP 

[-- - -1-H [P*+(*+v)Q~B*] 
(m24-Q*B*)* Q3B3 [P* + Q*B*] 

- l)P 

M 

c 
[i 2 + (2+v) Q*B*] 

i=l,3... [i*+Q*B*]* 

M 
[Q*B* - VP*] 

- y Q*B* CP*+Q*B*]* 

h2+Q2B2)* [ 2+(2+vI 2B23 + 

p=1,3... [:p* + Q*B*]* 
(D59'a) 
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with gQ and rQ are defined by equations (D56”a) and (D56"b). 

With -G as known, substituting from equations (D59'), (D56'a), 

(D56'b) and (D56'c) into equation (D56), one obtains 

t 
M 

-t C =Q& 26 
n Al ia, nQ 

+&L 1 
c 

A3 $n m=1,3... 
G(m) Fm (D56") 

Substituting from equations (D59'),(D56"), xD7'), (D77), (CL?') and (C13') 

into (D53), one then obtains 

(D53") 

where 

M 

B c 
[m2+(2+v)n2B2]G(m) 

[m*+n*B*]* 
B; - m=l,3... 

e [P + (2+v)n*B*] 

L [m* 222 
m=l,3... +nB] 

m=l,3... 
(D53"a > 

M 

[ 1 $p)cpn] f [n*B*-vm*] 
p-1,3... m=l,3..[m2+n2B2]* 

[m* + (2+v) n*B*] 

Cm* 
222 +nB] $n f 

m=l,3... 
(D53”b > 

With "11, -g, and B1; known through equations (D56"), (D5g'), and 

(D53"), the Fourier coefficients of the stresses can now be evaluated. 

From equations (B6C), one obtains 
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s' = s" n n = &AIE hl EnQ & + vE;l (D9 > 

S 1” = S 
,111 

m m = aBA3E x2 e z(m) 

From equation (B61), with c,i, -G, and Bn as known, one obtains 

=cX3Eh6 jmn 
nQ (D91> 

b#O> 

where 

m*A 
-: 1 n ?L~Q*B'~; 
J,= CliP -[,2 

-- 
(P* + Q*B*) + Q*B*]* gn 

2 2 2 
[m+QB 1 

2 @gOa> 

With cn, -G, and B1; as known, from equations (B34) and (B35), one 

obtains 

%nn = "nQ -Eh -&.m, 

C 6 mn= nQ cx3Eh &n 

where 

-& = - 
Q2B2Emp 

+ 
AIB m Ql rn Alm[m2+2Q2B2]B' n 

(p*+Q*B*) [m2+Q2B2]* K - - [m* + Q*B*]* 

c Aim m2(m2+2Q2B2) 
m = z [' - (m2+Q2B2)2 

P2 

(P* + Q*B*) 

Alm3 'n + 
QB[m* + Q*B*]* 

(D91) 

(D9la) 

@9-) 

Now with "n, G, B,I, sn, sm", cmn, k, and jmn known, equations 

(B16) and (Big) to (B25) w-ill give the following stiffener and plate 

stress equations: 
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N 
zn 

PI(y) = P2 (Y) = -Al+ 1 6,&. J& 4 + vE:l sin (y) (O<Y<~) 

n=1,3... n 
(D9* ) 

M 

p,(x) = p,(x) =@AEh 
3 2 c e G(m) sin CT) (0 < x < a) 

m=l,3... {D93) 

NX = QQEh f 
m=l,3... n=l,3... 

(D94 > 

(Nx)y,o = (Nx$.sb = @Eh A2 
m=l,3... 

(0 < x < a) 

CD95 > 

N 
Y 

= G3Eh f f BnQ Cm sin <y) sin (y) 

m=l,3... n=l,3... 

: : 1 : r: 

(WI 

n=l,3... 
(0 < Y < b) 

(D97) 

N = -omh 
xy 

f f fjnQ jm cam (7) cos (y) 

m=l,3... n=l,3... 

:I i z i 1; 

- - 

Substituting from equation (D53") into equations (Dl3) to (Dl6) and 

neglecting terms involving ?b$ one obtains 

p3w = P,(a) r P4(0) 
Al*2 

= P4( a) = c@A3E A2 SnQ- 
16Q*B 

E; 

CD99 > 
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With BA = B'n as known, from the first two 

9 Nx(O,y) = Nx(a,y) = -c@EhSnQ agt n 

Numerical results for condition (11. - The numerical result for 

equations (4), one obtains 

sin ( 9) (0 < Y < b) 

(DlOO) 

hl = 1, h2+0 for square plate (B=l) with all stiffeners identical, 

subjected to a pillow-shaped temperature distribution (P-Q=l) is shown 

in dimensionless form in figure 12 for Poisson's ratio v equals to 0.3. 

Limiting case of large stiffener areas, condition (2). - In this 

case, equations (~62), (~64), and (D53) will be the governing equations. 

The additional quantities needed in order to use these equations will 

now be evaluated. 

Substituting from equations (3), (Cl3'), and (D77) into equation 

@64b), and with aid of equation (D61a), one obtains 

M 

c [n*B* - vm2] 

Q(l) 
222 

=1+v m=l,3...[m* + n B 1 
n M (D64'b) 

1 

2 Em + (2+v) n*B*] 

m=l,3... Em2 + n*B*l* 

Substituting from equation (D58'b) into (D62), one obtains 

where 

i; = cm h G'(m) 
A3 

G'(m)= pQB 
(P*+Q*B*) 

.Emp- [*-A] 
(m +Q B > Q3B3 M 

1 
i=l,3 

(~62') 

([P + (*+v) Q2B2’ _ ll p 

[P* + Q2B2] 

. . . 

[i* + (2+~) Q*B*] 

[i* + Q*B*]* 

(D62'a) 
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Substituting from equations (31, (CL?'), (D7’), (D18’), @77), (D56'b), 

(D58'b) and (D64'b) into equation (D64), one obtains 

2 J1) 
-1 C n 

=-c&k - 
@Tl) 'n$ + C@ 

(2) 
$$iJ 'n (~641) 

n n 

where 

$1) = 
n 

vp ,[P* + (2+v) Q*B*' _ 1 1 

[P* + Q*B*] 
(~64") 

M 

paBr[P2 + (*+v)Q*B*' _ ll 1 1 

p = ( pQB - (p* + Q*B*) m=l,3...[m + 
n (P* + Q*B') M 

*Q2B2]* I6 

T [m* + (2+v) Q*B*l 
nQ 

[m* + Q*B*]* L 

m=l,3... 

M 

+vB( c 
[m* + (2fv) n*B*] 

m=l,3... [m2 + n2B2]* 

With c,i and i'm (m, n odd) known, and substituting from equations 

(D63'), (D62'), (D7'), (D77), (Cl?') and (C13') into equations (D53), 

there follows 

B' = 0!0Eh B(l) snQ + c~0Eh Al BL2) n n (D53 ’ ” ) 

where 
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#) 
n 

M 
,O) [Q*B* - vm*] 
n c [m* + Q*B*l* 

I 
m=l,J. . . - 

M 
&) 

c 
[m*+ 2+v )Q*B*] 

n 
m=l,3... lb* + Q*B*]* 

,[[P*+(2+v) Q*B*] _ ll 

[P* + Q*B*] 
M 1 

[m*+ 2+v )Q*B*] 
2 222 

m=l,3... [m+QB 1 

B(*) = 
n 

M 

Bfl 1 
[m2+(2+v)n2B21 

m=l,3... [m*+n*B*l* 
G' (m> 

M 

4nC 1 
[m* + (2fv) n*B*] 

m=l,3... [m2 + n*B*l* 

J[ $) M 
n lx 

m=l,3. 

4&&I M 
n 1 

m=l,3,. 

(D53"'a) 

[n*B*-vm*] 

Cm*+ n*B*l* 

[m2+(2+v)n2B21 

Ii* + n2B2]* . . 

(D53'"b) 

With the basic quantities En, gm, and Bn known (equations (D64') 

(~62~ 1, and (D53'")), the additional quantities needed in order to deter- 

mine the stresses will now be evaluated. Equation (B60), 

and (B35) will give the values of the odd-subscripted sn, 

jm, gm, cm as follows: 

(B611, (B341, 

p 
s; = s; = c@AIEAl[& -&y - vBrj2)] 

n 

S I II = II II S m m = &A3EA2 4m Bn G'(m) 

=CBEh6 J 
nQ I-WI 

(DlOl) 

(D102) 

(D103) 
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gmn=@3Eh6 nQ Gmn (D104) 

C =C@Eh6 nQ 'mn (D105 1 

where 

&B 
Jmn= 2'22 9rs+ 

,2,0) 
n 4 Q%3 B(l) 

+ n 

(P +Q B > B[m*+Q*B*]* a(') z[m* + Q*B*]* 

22 
Gm=-+$+imp- 

mQ Cc') 

2n+ n2,32]2 + 

4m[m2+2n2B2]B(1) n 

(P+QB) nh &) z[m* + n*B*]* 

(D104a) 

4m B(l) 2(,2 + 2Q2B21 m3co) 
cm = rrn n 

(m* + Q*B*)* 
- 11 - 

Q*B*[m* + Q*B*]* a;') 

(d + 

Now with CA, ;A, B,1, s:, s;", cmn, &, and jmn known, equations 

(BIG), and (Big) to (~25) will give the following stiffener tehsions and 

the plate stresses: 

N c(*) 

P,(Y) = P,(Y) = WAlEAl x 
(2) 

'fii fi - VBn 1 sin (y) 
n=l,:,... n 

(0 < y <b) (~106) 

M 

P,(x) = P,(x) = cSA3EA2 x e G'(m) sin (y) (0 < x < a) 
m=l,3... 

0107) 
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NX 
= c&Eh 5 f Gm sin (y) sin (y) EnQ 

m=l,3... n=l,3... 

(Nx$o = (N~)~=~ = cmh A2 f 

m=l,3... 

M N 

N 
Y 

= c&El-i C 1 Cm sin (y) sin (y) 6nQ 

m=l,3... n=l,3... 

(0 < x < a) 

(O<Y<~) 

(DlO8) 

(0 < x < a) 

@lo9 > 

(0 < x < a) 

(O<y<'b) 

(DllO) 

N 

(Ny)x,o = (NY,,, = -c&ah 1 

&) 

- 

n=l,3... 
4Q’B* $k 

sin (y)tj 
nQ 

n 

(0 < Y <b) (Dill) 

N = -c%3Eh 
w 

f f Jmn cos (y) cos (y, SnQ 

m1,3... n=l,3... 

;; : ; : 1; 
- - 

With the Bn = B'n known, equations (D13) to fDl6) yield the following 

tensions at the ends of the x-wise stiffeners where they join the rigid 

vertical stiffeners: 
N ?TB(l) 

p3(o) = P3(a) = P4(0) = P4(a) = aBA3Ek2 1 4: “nQ 
n-l,:,... 

0113) 

And from the first two of equations (4), one obtains the following running 

tensions between the rigid stiffeners and the plate edges at x=0 and x=a: 

149 

I 



Nx(O,y) = Nx(a, y) = ct@Eh f B(1) sin 

n=l,3;.. n 

( b -1 "nQ (0 <Y <b) 

(Dll4) 

Numerical results for condition (2). - The numerical result for 

A2--+0 and hl-0 for square plate (B = 1) with all stiffeners identical, 

subjected to a "pillow-shaped" temperature (P = Q = 1) is shown in 

dimensionless form in figure 13 for Poisson's ratio v equals to 0.3. 

Illustrative Prescribed-Force~Probl-m 

As another illustration of the application of the general'theory 

of this appendix, the case will now be considered in which the stiffeners 

at x = 0 and x = a are rigid and straight and the plate is stretched 

by means of forces applied perpendicular to these stiffeners. The loading 

in this case is that of figure 4b with Tl = T2 = T # 0 and all other 

loads vanishing. As in the previous example, the plate is assumed to be 

isotropic and to have the same Young's modulus as the stiffeners, while 

the stiffeners are assumed to be symmetric about the plate centerlines 

(that is A 1 = A29 A3 = A4). The temperature is assumed to be uniform 

and will therefore produce no stresses. Later on, for the sake of 

numerical calculations, the problem will be further specialized to the 

case of a square plate (b=a) with all stiffeners identical (Al = A2 = 

A3 = A4 = A). 

Reduction of general equations to special case. - Due to the absence 

of prescribed normal forces, shearing flows, and prescribed moments, the 

following quantities are all zero: 
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Pi(O), Pi(b), P2@), P2(b) (fig. 4b) 

Ml' M2 (fig. 4a) 

B 1 11 m, B;' (see eqs. (4)) 

(see eqs. (6)) 

(It should be noted that P3(0), P,(a), P4(0), P4(a), BA and B"n do not 

necessarily vanish.) And due to absence of thermal loading, the 

following quantities are also all zero: 

Tn, T", Tm", T;' 

Tmn 

VA, vi 

(see eqs.,(l4)) 

(see eq. (16)) 

(see eqs. (23)) 

Because in this example the structure and loading are symmetrical 

about both centerlines (x = a/2 and y = b/2) it follows that "n = c:, 

G = <, and B; = B;, and the simplified system of equations, namely 

equations (D53), (D56), and (D57), may be used for the determination of 

the Bn, CA, and -$. 

(1) From the given loading conditions the quantities En , defined by 

(5) equation (D7), Sn , (7) defined by equation (Dl8), and Sm , defined by 

equation (D20), can be reduced to the following 

,(l) = 0 
n (D7” ) 

s(5) = 0 
n (~18") 

s(7) = 2T 
m a (M = 1, 3, . . . . M) 
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. ._... -.-._. 

Substituting from equation (D7"), (Dl8"), (C22'), (C23') and (D71) into 

equation (D56b), one obtains 

5, = 0 (D56"'b) 

Equations (D57), which define the quantities i&J can be reduced to the 

following form if use is made of equations (C24'), (D7"), (D71), (D20"), 

(D56'a), (D56'b), (D56'~), (D57'a), and (D57"'b): 

( f 2 grn + [l + h2B4 f 
n=l,3... n n=l,3... 

(m2 +n12B2)2] 

N [ n2 - L][m2 + (2+v)n2B2] 

-h2B4 
+ n2B2)2 ( m2 n2B4 

M 1 G(m) 
n=l,3... 

(3 
222 2 

+nB) Ci + (2+v)n2B2] 

i=l,3... [i2 + n2B212 

M 
2 =-- 
mn 1 

p=l,3... 

where 

0 - k2B4 
[ 

n2 
(m2+n2B2)2 

- L][m2+(2+v)n2B2] 
n2B4 

M 
2 222 (m +n B ) 

i=l,3. . . 

[i2+(2+v)n2B2] 

[i2+n2B2j2 

. Cl- "ti) P 
G(P) m (m = 1,3,...,M) (D57il)) 

G(p) = $+ 

With & known from the solution of the above equations, the c,', can be 

determined from equation (D56). If use is made of equations (D56'a), 

(D>~'c), (D56"'b), and (B66), then equation (D56) can be put in the 

following form: 
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M 

C(n) = ' 

n BC Fn 
c m Frn G(m) 

m=l , 3 . . . 

where C’A 
C(n) = -+-+ 

With the c; and im known, equations (D53), 

and (B66) lead to the following expression 

Bn: 

(n = 1, 3, . . . . M) 

(D56(1)) 

(D77), (D7'), (C="), (Cl3'), 

for the determination of 

(n = 1, 3, . . . . N) (D530)) 

where 
B'A 

B(n) = -$$ 

With the Bn known, from equations (D13) and (Dl4) one obtains the follow- 

ing tensions at the ends of x-wise stiffeners where they join the rigid 

vertical stiffeners: 

N 

P3(0) = P,(a) = P4(0) = P4(a) = T[$ - 1 
hp 
G B(n)] (D115) 

n=1,3... 

And from the first two of equations (4), one obtains the following running 

tensions between the rigid stiffeners and the plate edges at x = 0 and 

x = a: 
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N 

Nx(O,y) = Nx(a,y) = F 
1 c B(n) sin (y) (O<Y--) 
n=l, 3... (~116) 

With "A, &, BA as known, equations (B&I) will give the values of 

the odd subscripted sr]l, si, sm", s'm", and equations (B61), (B34), and 

(B35) values of jm, &, and cmn with m and n both odd. The expressions 

obtained are: 

s; = s; = Tk(n) - vB(n)] 

1” = S 11,’ 

'rn m = TG(m) 

jmn = p J(m,n) 
1 

gmn = f G(m,n) 

C = p C(m,n) 
1 

where 

@117) 

(Dii8) 

(D119 > 

(D=‘O) 

(DJ-21) 

J(m,n) = 4I-a 
JT[~~ + n2B2J2 

[n2B2B(n) - m2C(n) - mn B2G(m)/C] 

(Dll9a) 

G(m,n) = 4 
n[m2+n2B2J2 

[mn2B2C(n) + n3B4G(m)/C + m(m2 + 2n2B2) B(n)] 

(Dl20a) 

C(m,n> = 
4m3C(n) + 4m2n B2G(m) 

.[m2 + n2B212 3r[m2 + n2B2J2 C 

+ FBErl) ,m2(m2 + 2n2B2) 

Cm2 + n2B2)2 
- 11 (Dl21a) 
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Equations (B16) and (Big) through (B23) then give the following 

stiffener tensions and plate stresses: 

N 

P,(Y) = P,(y) = T c CC(n) - vB(n)l sin (y) (0 <y<b) 
n=l,3... 

0122 1 

M 
P3(x) = P,(x) = T c G(m) sin (7) (0 < x < a) 0123) 

m=l,3.. . 

(O<x< ’ a) 
G(m,n) s-in (El sin (“xyl ,. 

m=l,3... n=1,3... 
---- \ a' ---- \ b' (0 < Y <b) 

(DI-24) 
M 

(Nx&.vo = (NxJyzb = F 1 [G(m)/C] sin (7) (0 < x < a) 
1 m=l,3... 

CD=‘5 1 

N+f ; C(m,n) sin (y) sin (y) (0 < x < a) 
Y 

m=l,3... n=l,3... (0 <Y <b) 

(Dl-26) 
N 

(Ny)x=o = (“,)x=a = F 1 (0 <Y <b) 
1 

C(n) sin y 

n=1,3... (DI-27) 

N =-Th 
Al? ? J(m,n) cos (y) cos (7) 

(0 < x 5 a) 

xy (O<yIb) 
m=l,3... n=l,3... 

m-28) 

Numerical results for hl and L2f. - The equations described 

above were applied'to the special case of a square plate (B = 1), with 

all stiffener areas equal (Al = A2 = A3 = A4 = A), and Poisson's ratio 
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V equals to 0.3. The assumption that B = 1 and that all stiffener areas 

are equal implies that hl = A2 (see eqs. (~81)), and the common symbol 

h will therefore be used for both hl and k2. The Gauss-Seidel iteration 

procedure was used in solving equations (D57(1)). 

The results obtained from the stiffener tensions and plate stresses 

are shown in dimensionless form in figure 14 for h = 1.0. The values 

of M and N employed in the calculations are indicated on the figure. In 

general, stresses were computed at x/a and y/a interval of 0.1. 

Limiting case of large stiffener areas. - For the case in which all 

the stiffener cross-sectional areas are very large compared to the plate 

cross-sectional area, equations (D53), (D71), and (D72) may be employed 

as approximations which become more and more accurate as the ratio of 

stiffener to plate cross-sectional areas approach infinity. 

Equation (D72) can be reduced to the following equation by substituting 

equations (D7"), (D20"), (D77), and (C24') into equation (D72) with Zi 

defined by equation (D58b): 

G(m) = & (D72') 

where 
%l A3 G(m) = 7 

Substituting from equations (3), (Cl2'), (D7"), (D18'), (D77), and (D64'b) 

into equation (D71), one obtains 

c(n) = --$&J 
n 

M 

c m[m2 + (2+v) n2B21 G(~) 

m=l,3... cm2 -t n2B212 
M 

c 
[m2 -t (2+v) n2B2] 

m=l,3... cm2 + n2B2J2 , 

(D71’ ) 
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where c'A 
E(n) = * 

and the G(m) are known from equations (D72'). 

With the c,', and Em known, equation (D53) can be expressed in 

the following form if use is made of equations (D77), (D7'), (Cl2'), 

(Cl3'), and (B66): 

M 

1 
m[m2+(2+V)n2B2] - 

ficn) = myl,3E;I.. cm2 + n2B2J2 
G(m) C(n) f :I$: i2$i 

m=l,3... 

nC c 
2 Cm + (2+v)n2B2] 

_ M 

1 
Km2 + (2+v) n2B2]- 

222 
m=l,3... lb2 +nBl m=l,3... h2 + n2B2J2 

@53(2 > > 

where 

BAA1 B(n) = oh 

With the Bn thus known, from equations (D13) and (Dl4) one obtains the 

following tensions at the ends of x-wise stiffeners where they join the 

rigid vertical stiffeners: 

N 
~~(0) = P,(a) = ~~(0) = P4(a) = T[; - (nh2/4) C B(n)/nl 

And from the first two of equations (4), one obtains the following running 

tensions between the rigid stiffeners and the plate edges at x = 0 and 

x = a: 
N 

Nx(O,y) = Nx(a,y) = F 1 B(n) sin (nxy/b) (0 < y < b) 
1 n=l,3..* 

0130 > 
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With "11, -G, Bi known, equations (B&I) will give the odd-subscripted 

s', s " s ' " S n "", n' m' m and equation (B61), (B34), and (B35) the odd-subscripted 

jm, gmn, cmn, as follows: 

s' = s" 
n n = T[F(n) - vB(n)l 

S 1" = S 1111 

m m = T:(m) 

($1 

= Th S(m,n) 
Al 

b#O > 

gmn = F Z(m,n) 

C = p F(m,n) 
1 

where 

S(m,n) = 4nB 
n[m2+n2B2J2 

[n2B2g(n) - m2?!(m) - mn B2E(m)/C] 

(D131) 

(D132 > 

0133 > 

0134) 

0135 1 

(D133a > 

?$m,n) = 4 
n[m2+n2B2J2 

[mn2B2C(n) + n3B4E(m)/C! + m(m2 + 2n2B2)B(n)l 

(D134a) 

F(m,n) = 4m3E(n) + 4m2n B2E m) 

n[m2 + n2B2J2 II [m2 + n2B2]C 

+$y 
m2(m2 + 2n2B2) _ 1I 

Cm2 + n2B2)2 
@135a) 

Finally, equations (B16), and (Big) through (B25) will give the following 

stiffener tensions and plate stresses: 
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N 

P,(Y) = P,(y) = T c E(n) - vE(n)] sin (rnty/b) 

n=l,3... 

M 

p,(x) = P,(x) = T x Z(m) sin (mrrx/a) 

m=l,3... 

M N 

N'=p 1 1 X 
z(m,n) sin (mrrx/a> sin (nq/b) 

"m=l,3... n=l,3... 

M 

(Nx)Fo = (Nx&.eb = e c CZ(m)/C 1 sin (mnx/a) 
m=l,3... 

M N 

N 
Y =pc c c(m,n) sin (mJcx/a) sin (nrry/b) 

m=l,3... n=l,j... 

N 

(Ny)x,o = (NY),, = F 1 c(n) sin (nrry/b) 
1 n=l,3... 

M N 
N =-Th 

xy Al c c z(m,n) cos (mrrx/a) (nv/b) 

m=l,3... n=l,3... 

(0 Cy<b) 

ml361 

(0 < x < a) 

0137) 

(0 < x < a) 

(0 <Y <b) 

@138 1 

(0 < x < a) 

(Dl39) 

(0 < x < a) 

(0 <y-d 

(D140) 

(0 < Y Cb) 

(Dl41) 

(0 5 x 5 a) 

(0 <Y <b) 

(Dl42) 

Numerical results for the case of large stiffener areas. - The numerical 

results for hl = h2-0, obtained from the above equations, are shown in 

figure 15 for square plate (B = 1) with all stiffeners identical and 

'Poisson's ratio V equals to 0.3. 
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APPENDME 

ANALYSIS FOR ALL FOUR STIFFENERS 

WITH PRESCRIBED DISPLACEMENT CONDITIONS 

In the present appendix the case of figure kc is considered. In 

this case all the edges of the plate are assumed to be forced into the 

prescribed shapes by means of attached rigid stiffeners (shown shaded 

in fig. 4c), which shapes are defined by known values of Kn, Ki, Km", 

and Ki" in equations (8) through (11). Correspondingly, the Fourier 

coefficients B' B" B"' and B"" n' n' m m , which describe the running tensions 

between the stiffeners and the plate edges, are now unknowns. In 

addition the loading resultants Tl, Ml, T2, M2, T3, M3, T4 and M4 

constitute eight new knowns, suppl~ting Pi(O), Pi(b), P2(0), ,P (O), 
A3 

P,(a), P4(O),'P4(a), which are now unknowns. p,(b) 

Formulation of Boundary Condition of Prescribed Curvature 

Equations (D4) apply also in the present case. They express the 

requirement that at x=0 and x=a the curvatures of the stiffeners and 

the curvatures of the adjacent plate edges to which they are joined 

must be equal. These equations are rewritten in slightly rearranged 

form as follows: 
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2 2-6 

Krl = -% - B;(y)2C, f - C2(Z) I(+? 
IIi=O 

2 M 

c 

2 2-6 
"B;(y) Cl wm +(c, - c4) (?I2 - C2(Z) I(+, 

m=O mn 

+c2 [cl(y)2-c3(“,2 1 (?I2 EC; 
2-6 

- ~-l)“q(+) 

M 
2 nn 

-i;-T c 
1 F C2[B;"- (-l)%;' , [cl(y)2 
Emn 

- c,(!yl 

m=l 

M 2 2-5 

KI1 = -?I - Bl;(F)2Clx(-l)m +[(C3-C4)(~)2 - C2(%) I(+ ) 

m=O Inn 

M 

+B;(y)2Cl 1 $- [(C3-C4)(=32 
2 2-6 

- c2cy I(+, 
m=O Inn 

M 2 
+ 

c 
(-l)m + (Tmn(t) [(C,-C,) (y, - c2cy21 

m=O Inn 

+ 3y3Cll(C3-C4)(~)2-C2(~)2,kp)n gp 

M 
2 rut 

- f;b c 
c-l)? + 2 C2[B;," - (-l)?13;"][~l(~)2 - c3cy21 

m=l Inn 

(El) 
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Two more equations, analogous to these, will now be obtained from 

the conditions of prescribed curvature along the edges y = 0 and y = b. 

Differentiating the last of strain-displacement relations, equations (Bl), 

with respect to x, one obtains 

2 ay ac 
av xy X -= 
3X 2 ax 

-- 
aY 

Eliminating the strains in terms of the stresses by means of equations 

G9, and then the stresses in terms of the stress function through 

equations (Bk), this becomes 

2 he 
G = (c3 - c4) -& - Cl F - $ 

Y3 3X x Y 
ma 

The curvatures of a2v/ax2 of the edges y = 0 and y = b are therefore 

i2V $1 y=o 
= (c3-c,)&) - 

ax2ay y=o 
c (A) 

Ii ay3 y=o 
- & 

Y=O 

(E3) 

y=b 

The terms on the right-hand side of the first of equations (E3) can be 

expressed in series form with the aid of equations (21), (B&2), and 

(B43). The result is 

(a2v) 

M N N 

ax2 y=~ 
= 1 E(c4-c3) " c jm - Cl 1 hm - VA" ) sin 5 

m=l n=O n=O 

Comparing this equation with equation (lo), one obtains the following 

M equations representing the boundary condition of prescribed curvature 

along the edge y = 0: 

162 



N N 

%I" = (C4-C3) 2. 
1 

jm - Cl hmn - Vm" 
c 

(m = 1, 2, . . . . M) 

n=O n=O 
(E4) 

Similarly, the condition of prescribed curvature along the edge y=b is 

N N 

KI’rY’ = (c4-c3) ? 
c 

(-l)n jmn - Cl 1 (-l)n hmn - Vi" 
n=O n=O 

(m = 1, 2, . . . . M) (E5) 

The unknowns jmn andhmn in these equations can be expressed in 

terms of basic unknowns cn, cl,gm,G,Bn,etc: To accomplish this, we 

first observe that equations (B58) and (B61) can both be represented 

by the following single equation, in which any undefined quantities are 

to be considered zero: 

= - --$(Tm + 5 ; [CA- (-l)mc;lc2 + g y [g'm-(-l)ng"Jcl) 
mn 

(")3[B,"-(-l)nB;"]C2 + ~(~)3~Bn-(-l)mB"]CL) n 

(E(5) 

Furthermore, from equation (B47), (Bl4 

h mo 

1, 03501, and 0351 >, one obtains 

(E7) 

Emnhmn 
= (T)3 Tmn + z 5 (y)' [~n-(-l)~ c;"]C, 

Im$ :; n 
- ~~gm-(-l)ng$[C2(~)4 + (C4-2C3)(32(321 

+ z(?)(y)[Bn-(-l)m B;;][(e)2 C2 + (32(C4-2C3)] 

- $(~)2(~)2[Blb"-(-l)nB;"]C2 08) 
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and these two equations can be represented by the following single 

equation in which, once again, undefined quantities are to be regarded 

as zero: 

Emnhmn = (y)’ Tm + ; ” (y)3[c; - (-l)m qc, 

b # 0) 

2-6no -- 
b 

2 2 
+ (C4-2C3)(:) (?I 1 

+ ~(~)~~)[B,-(-l)mg;;l[l~~2~2 + (32(C4 - ec,)l 

_ ; (!%)2(y)2 [B;” - (-l)n B'm"]C2 (E9) 

Substituting from equations (E6) and (Eg) into equations (E4) and .@5), 

one obtains the following equations, which are analogous of equations {El): 

N 2 2 
,A" = e,;" + 

3 - C,)(5) - C,(y) 1 

2-6 
+ + (~)2~sm-(-l)n~,[C2(~)2 - c3(yP lc,3 

N 
2 mrr L-c 
a a 

~(~)[B~-(-l)rb;:I[c2(~)2 - 

n=l 

2 N 2-6no -B;"(e) 1 +- b [(c3-c4Ny2 

n=O mn 

+Bh;“(~)2 f (,l)n & +[(c3-c4)(~)2 - cl(yj2 lc, 
n=O Inn 

@lo) 
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N 

Ki' = -vi"+. 
x 

(-l)-I+Tm y C(c3-cpy2 - cl(y)2l 

n=O mn 

N 

+ 1 (-1)n & ry-py, I(c3-c,)Py2 - c1q2 I cc;- (-l)mc~lc2 
n=O mn 

2-6no +- 
b 

N 
2 rnn - -- 
a a 1 

(-l)n & (Y) LB;- (-l)%;;l~c2(~)2 - c+y21c1 
n=l mn 

- c1(5J2 lc2 
n=O mn 

2 N 
+B;tr(E) 1 $L + - Cl(yJ2 lc, 

n=O mn (ElO) 

Formulation of Boundary Conditions of Equilibrium 

Equilibrium considerations for the stiffeners at x=0 and x=a lead 

to the following relations (see appendix D): 

N 
Tl Ml P+o) = - 1 % B; + 2 - b 

n=l 

N T M 
P,(a) = - &B;+++ 

n=l 

N 

PJO) = 1 (-1)" % T1 Ml B;+2+b 
n=l 

(Eli) 

N 

P&(a) = x C-1)" $ 
T2 M2 B;+2+b 

n=l 
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Additional equations of 

equilibrium of the other two 

the stiffener at y = 0 are 

the same type result from considering the 

stiffeners. The equilibrium equations for 

plm + P2(0) + 1 Ny(x,O) dx = T3 

0 

a 

a - p2(o) + 
/ 

x N (x,0) dx = e + M 
Y 3 

0 

By substituting 

M 

Ny(x,O) = 1 Bm" sin (y) 
m=l 

and solving these equations, one obtains 

m=l 

Thus, in effect, the unknown Pi(O) and P2(0) have been expressed in terms 

of the known T 
3 andM. 

3 
Similarly, from the equilibrium equations for 

the stiffener at y=b, one obtains 

M 

Pi(b) = - T4 M4 2 ,;I' + 2 _ a 

P2(b) = fl- (-l)m 2 B;" + % + > 

m=l 
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"'I Terms in R' R"> R' ", RI"' Au n-n ti lu 
Substituting from equations (Eli) to (E13) and (B69) into equation 

w% and isolating the BA, B" n, B;" and B;" terms, one obtains 

m=l 

N (E14) 

RIZl" = %" + 1 
H&B;-.(-I)mB"] + PmB;" - r;B;" 

n=l 

N 
RF! = ,;” _ (-l)n Hmn [B'n - (-l)m B"n] - r;B;" + Pm"Bhl" 

n=l 

where St S" S I" S"" n' n' m ' m are known loading terms defined as follows: 

M 
S;=&;~+AE ST'- 1 mnf12T T3 2M3 

E,,ab mn+x 
T4 

lln n - x -(-l)yb - 
m=l 

(El?) 
M 

s; = -q -I- A2E2 y T; -I- 
t: 

(-l)m $- =$ Tmn + +j + 2 -(-l)n . 
m=l mn 

m=l 
(El71 
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N 
,;" = -q" + A4E4 y T;" + 

c 
(-l)n $ $ Tm + 2 + ?f& -(-l)m * 

n=l mn 

yn ' and 7: have been defined in equations (ClO) and 

rm through I?"' and nmn m are also known quantities 

the following equations: 

N 

r; = &+AE EC + 
33 a 3 c 

n=l 

N 
p = A!- + 
m bmrt 

N 

%” = 
&+AE SC + 44 a 3 c 

and 
n=l mn 

mu 

06) - 

and are defined by 

(=‘l) 

(=‘2) 

System of Simultaneous Equations 

Using y(l) and Y(~) n n as defined in equations (ClO) and (D6), equations 

(El) can be written in the following form: 

Bty(‘) 
nn 

_ B”Y(~) = 6’ - 
nn n 

A’ [,t” -(-l)r$““] f f@f-(wl)n ,I’] 
mnm m m m 

m=l m=l 

M 

+ 
1 

v~[C; - (-I)~ Gil (n = 1, 2, ODO, N) 

m=O 
(E23) 
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B1;yf)-B”y(l) = fj” _ 
nn n f (-l)mA'&B;"-(-l)nB;'] + f(-l)mP&-(-l)n<] 

m=l m=l 

+ M (-l)mv~Cc;-(-l)m q z (n = 1, 2, . . . . N) 

Ill=0 (~24) 

where 6' n' AA, and 6: are known quantities, given as follows: 

M 
"A = -K; - V; + 1, $- Tmn(:)[(C3-C4)(32 - c2cy21 

m=l 
(E23a) 

AL= $ T + 2 [cl(Es)2 - c3(TJ2 lc2 (E23b) 
mn 

M 
"; = -K; - V; + 

1 (-l)m $- Tmn(y)r(c,-C4)(32 - c2cy21 
m=l mn 

(E24a) 

Similarly, equations (ElO) can be written in the following form: 

- (-l)m B"] 

n=l 

N N 

+ 
c l-l;& (-l)mc;l + c v&g;- (-lygl 
n=l n=O 

B’ 42) 
mm 

(m = 1, 2, . . . . M) (E25) 

Btff+) = E""- N (-l)nA'& [B' _ 
mm m c n (-1PB;1 

n=l 

N N 

+ 
1 

(-l)np~[E;-(-l)m~;l + 1 (-l)nv~[~~-(-l)n~;l 

n=l n=O 

(m = 1, 2, . . . . M) (~26) 
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_ _ . .._ --._ ,.. .._ _ 

where 

r(l) = (?y2 f 
2 2-6 

m +I(c3-c4)(2)2 - Cl(T) I(-+%, Cm54 
n=O mn 

d2) = (y2 f(-lp &L(c3-c4)(~)2 
2 2-6 

m - cl(y) I(+%, 

n=O mn 
( E25b > 

N 

“Ih” = m,;” - ,A” + 
c & Tm(3~(C3-C41(~12 - c&y21 
n=l mn (E25c) 

*ln = a 2 : & (y)[c2(E!z)2 
mn 

- c3(y2 lc, 

mn = & [c2(y2 
2-6 

V” 
mn 

- c3(=)2] 2 +2 

(E25d) 

W5f) 

N 

6;’ = _ K;’ A,T;” + 
c 

(-1) n + T (E)[(C3-C4)(32-Cl(32, 

n=l mnmb 
(E26a) 

Substituting from equations (Elk) into equations (B62) to (B65) 

yields the following equations: 

b’ (4 f ii; - ;-1F Ifi; 
- - (n = 1, 2,, . . . . N) 

m=l mn 
@'7) 
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M 

-c;Bl(n) + 'cia2(n) = 53" - 1 (-l)m nm[Bm" - (-l)nBcl] - 7;Bz; n + yil"BII 
RF1 

+ p,’ f 
m=l 

N 

n=l 

N) 
mn 

633) 

+I'B ; ;'I - r;B;' 

2 N 1 C,-iml) 
m -,,, 

n (m = 1, 2, . . . . M) 

n=l mn 
(E29) 

N 

-Gp2(m)+&a4(m) = Sz' - ~(-l)%mn[BI;-(-l)a!B;] - FiBA" + Fm"B;" 
n=l 

+ f$y, 
2 N 

1 (dn 
Q(-l)m ," 

n E (m=l, 2, . . . . M) 

n=l mn 
(EX) 

Equations (F23) through (E30) constitute 4N + 4M equations that have 

to be solved simultaneously for the 4N + 4MunknownsCn,C", -G, g:, Bn, 

B", Bm", and B;". 

Procedure for Use of Equations 

All the pertinent equations for this case have been presented above. 

The procedure for using them will now be summarized: Equations (F23) to 

(E30) are first solved simultaneously for the c' n, ?', -G, -&', Bn, B", 

B 1 11 
n' and B"". n With. these known, equations (B60) then give the s' s", n' n 

S , 11 m , yy and equations (B57) to (B59) and (B61) the jm. Finally, equations 

(B16) and (Big) to (B25) give the stiffener and plate stresses. 
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Special Case: Square Plate, Structure and Ioading Symmetrical 

About Centerlines and Diagonals 

If the plate is square (b=a) and if the structure, loading, and 

thermal strains are symmetrical about the centerlines (x=a/2, y=b/2) and 

about the diagonals, considerable simplification of the simultaneous 

equations can be effected. Symmetry about centerlines and diagonals 

implies that Al = A2 = A3 = A4 = A, Pi(O) = Pi(b) = P2(0) =.P2(b) = 

P3(0) = P,(a) = P4(0) = Q(a), ql(y) = -%(Y) = q3(x) = -q4(x), e,(y) = 

e2(y), e,(x) = e4(x), Tm = 0, for m even or n even, Tl = T2 = T3 = T4 = T, 

Ml = M2 = M3 = M4 = MO, 

Kil = Ki-l = O 
for n even 

VA = v; = O 1 

,A" = K;" = 0 

I 

for m even 
Vm" = vk" = 0 

Kr; = -“; 
% = -IT” I - “II = -6” n 

n 

for n odd 

J - fi”’ = -fj”” for m odd 
,I$ = -,;" m m 

By the property of symmetry about the centerlines, it follows that 

Cl .= ,,I = -1 
n n 

gm = $ = B' = B; = B"' = B"" =: 0 
n m m (m,n even) 

(E31) 

172 



Ii 

'I 

(m,n odd) i 

J 

(E32) 

In order to insure that the physical symmetry about the diagonals is mani- 

fested in the mathematical solution, M and N will be restricted to be 

equal. It can then be expected that 

Consequently, the original simultaneous equations system, equations (E23) 

to @30), can be reduced to the following: 

M 
B1[(7(')-7f))+2*l ] = 6' + 2 

n n nn n c 
p' El + 2Cl; f v' 

Pn P Pn 
p=l, 3. Y. IFL3.0. 

M 

-2 c "A&, (1 - snp) (n = 1, 3, b D ', M) 

p=1,3... (E34) 

- p," f 
?(l - 6 n> 

F 
p=l,3... pn 

(n = 1, 3, ..", M) (E35 1 
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The procedure for the special case can be summarized as follows: 

Solve equations (E34) and (E35) simultaneously for the "11 and Bn 

(n = 1, 3, . . . . N). (This can be done by the Gauss-Seidel iterative 

method, which will be described in detail in a later section dealing 

with an illustrative thermal-stress problem.) With these known and 

using the relations E" = 'c' n 
n, -G = -& = "A, B; = B;, B;" = B;' = B; 

(m,n odd), equations (B6C) will furnish the values of s' I II 
n' s;, s m ) s;' 

(m,n odd), and (B61) the values of the jmn (m,n odd). Equation (B16) 

and (Big) through (B25), in which only the odd values of n and m are 

included, will then.give the stiffener and plate stresses. 

Limiting Case of Large Stiffener Areas 

Still referring to the special case of symmetry with respect to 

plate centerlines and diagonals, the limiting condition in which the 

stiffener cross-sectional areas A are large compared with the plate 

cross-sectional area will now be given brief consideration. This 

limiting condition can be analyzed by means of a first-order perturbation 

--lo) applied to equations (E34) and (E35), as follows: Assume "n = cn + G(l) n' 
B' = B(O) + ),&I 

(i35)," 

n , substitute these expansions into equations (E34) and 

and equate separately terms of the zeroth and first degree in h. 

- (0) This will lead to four systems of simultaneous equations, two for cn 

and B(O) -Cl) and two more for c and B(l). n The latter two equations will 

-Co) involve the c n and B(O). nThereforI the c(O) and B(O) equations must n n 

be solved first, -(l> after which the c and Bil) n n equations can be solved. 

This technique will be described in more detail in connection with 

a particular application in the next section. 
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Illustrative Thermal-Stress Problem 

In order to illustrate the details involved in the application of 

the foregoing analytical results, a particular example wil1b.e considered 

which has the following charact.eristics: 

a) All four edges kept straight; therefore the KA etc. in equations 

(8) through (11) are all zero. 

b) Plate isotropic; therefore the elastic constants are given by 

equations (3). 

c) Plate and stiffeners have the same Young's modulus E. 

d) Al = A2 = A 
3 

= A4 = A. 

e) Plate with the same dimension in x and y directions; therefore 

B in equation ((379) equals to 1 (a = b). 

f) No force loading. 

g) Stiffener temperature constant at the value To. 

h) Plate temperature T(x,y) symmetrical about both centerlines 

(x = a/2, y = b/2) and varying sinusoidally in accordance with the 

following equation: 

T(x,y) = To + 0 sin (F) sin (y) 
(0 <_ x < a) 

(05~9') 

where P and Q are odd integers. 

i)P=Q 

j) Plate and stiffeners have the same coefficient of expansion a. 

It will be recognized that in this problem, as described above, there 

exists symmetry about the plate centerlines and diagonals. When 

numerical calculations are considered, the problem will be further 

specialized to the case of a "pillow-shaped" temperature distribution, 

namely P = Q = 1. 
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Reduction of general equations to special case. - From the given 

temperature distribution, one obtains the following equations for the 

known coefficients in terms of temperature distribution and the coefficient 

of expansion a (see appendix C): 

Tm = -6 6 2 2 mp nQ c@(z) [P + Q2B2, 

Similarly, 

(E36) 

(E37) 

(E38) 

(E39) 

Due to the absence of prescribed forces, the following quantities are 

all zero: 

Tl, Ml, T2, M2> T3> M3, T4, M4 (fig. 4c) 

(see eqs. (6)) 

(It should be noted that Pi(O), Pi(b), P2(0), P,(b), P3(0), P3(a), 

Pq(0), P4(a), Bn, BL, Bm", B"m" do not necessarily vanish.) 

Because in this example the structure and loading are symmetrical 

about both centerlines and both diagonals, the simplified system of 

equations, namely equations (E34) and (E35), are the governing equations. 

From equations (E36) and (E37), (~81), and (E15): 

s; = 6 a0Eh PQB 
nQ -(P2 + Q2B2) 

(EL59 

176 



Substituting from equations (3) and (~81) into equation (E22), one 

obtains 

(3 
(E22') 

Equation (E23a) can be reduced in the following expression by substituting 

from equations (3), (~81), (E37) and (E38): 

“A = m (%, ,[P2 + (2+v) Q2B2 1 _ 
[P2 + Q2B2, ‘) 'NQ (E23’a) 

Substituting from equations (~81) 

obtains 

2mn[n2B2 - vm2] B 
%-An=-- b[m2 + n2B212 Eh 

and (3) into equation (E23b), one 

(E23’b) 

Substituting from equation (~81) into the first and fifth of equation 

(B67), one obtains 

h M 
al(n) = AE (1 + -$ c 

m2 

ih2 + n2B212 
I 

IL=1 

h M 

Bl(n) = fi-13 --$ 1 .‘-g 

,rn m2 

m=l,jLm + n2B212 

Therefore, M 

a,ld - Sl(n) = AE II-+ Al c 
m2 

[m2 + n2B212 
I (E40) 

m=l,3... 

Equation (E34) can be reduced to the following expression by substituting 

from equations (~81),. (Cl2'), (Cut), (D77), (E23'a) and (E23'b): 
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( 2(B2 - y)B2 
-2nG2 f 

[l+ B212 p=l,3.. . 
'p;pi ~2~~~2~>~1) B(n) 

PJ~ $P2+(2+v)Q2B2] l> 
M 

= "nQ> [P~+Q~B~I - 
- 2nB2 

c 
p[p2+(2+v)n2B2] C(p) 

p=1,3.. . [p' + n2B212 

M 
[n2B2-vp2] 

M 

+2n2B2C(n) 1 
[p2+n2B212 

-2nB2 c 
p[n2B2-vp2]B(p) 

[(p2+n2B2 I2 
(l-BP) 

p=l,3... p=l,3... 

(n = 1, 3, . . . . M) (E34') 

where 

“Ii 
I 

B(n) = a9 C(n) = 2 

Substituting from equations (~81), (C22'), (C23'), (El5'), (E22'), and 

(E&O) into equation (E35), one obtains 
M 

(n[l + Al c +&I + 

?blB3 

n(1 + B2)2 
I C(n) 

p=l,3..!P + n B ) 

nh M 
1 PQ =6 --- 

nQ 4 [P~+Q~B~] 
+ [vn+ hn3B2 1 

1 c 2 2 ,lB(n) 
p=l, 3... (p2 + n B )' 

M M 

+?b 1 1 r P3 P(l-E,,)C(P) 
- - - 2 222 

p=l, 3... (P B ) +n 
;]B(p) Xln2B2 1 

p=l, 3... [p2 + n2B212 

(n = 1, 3, . . . . M) (E35') 
Procedure for numerical solution. - In the solution of this system 

of equations (E34') and (E35') the Gauss-Seidel iterative procedure of 

reference 6 was employed. Briefly this involved an initial assumption 

that all the B(p)'s'and C(p) 's in equations (E35') were equal to zero 

except C(1). This allowed an approximate value of C(1) to be obtained. 
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Substituting this approximate value of C(1) into equations (E34’) and 

setting B(3), B(5), etc. and all other C(p)'s equal to zero gave an 

approximate value of B(1). Substituting these approximate values of 

. B(1) and C(1) into equation (E35’) and setting all other C(p)'s except 

C(3) and all other B(p)'s equal to zero gave an approximate value of 

C(3) * Substituting these approximate values of C(l), C(3), and B(1) 

into equations (E34’) and setting all other C(p)'s and all other B(p)'s 

except B(3) equal to zero gave an approximate value of B(3). Continuing 

in such a fashion it was possible to obtain one set of approximate 

values for the B(p)'s and C(p)'s. This set is called the first iteration 

solution to the system of equations (E34’) and (E35’). Additional 

iterations were obtained in the same manner as the first iteration 

except that initial values of unknowns are not assumed to be zero are 

taken from the results of the previous iteration. The procedure was 

stopped when no B(p) or C(p) changed more than 0.000001 from one 

iteration to the next. Alternatively, one can reverse the order in 

which equations (E34’) and (E35'), solving for a B(p) in equations 

(E34') first, then for the corresponding C(p) in equations (E35'). The 

final results are the same as in the above procedure. 

With the Bn known, and Tl = 0, Ml = 0, from the first two of 

equations (Eli), one obtains the end tensions in x-direction of stiffener 

at y=O: 

N 

P3(0) = P,(a) = - o6U.E h c & B(n) (Eli') 

n=l,3... 
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Due to the properties of double symmetry and symmetry about the 

diagonals, with B1; and cn as known, then B" = B"' = B"" = BP and 
P P P 

C;I = g; = g; = c;. With these known, equations. (B&I) will furnish the 

values of s' 11 n' 'n' 
&g', ql; (B61) the values of jm; (B34) the values 

of gmn; and (B35) the values of cmn (only the odd-subscripted quantities 

are needed). Equations (B16) and (Bl9) to (B25), with the only odd values 

of n and m included, will then give the following stiffener and plate 

stresses: 

N 

P,(Y) = P,(y) = CMTa c [C(n)-vB(n)] sin (y) (0 < Y < a) 
n=l,3... 

(E41) 

M 

p,(x) = p,(x) = em c [C(p)-vB(p)] sin (7) (0 < x < a) 

p=l,3... (~42) 

(0 < x < a) 
Nx = c@Eh G(m,n) sin (y) sin (y) (o < y < a) 

m=l,3... n=l,3... 
(E43) 

M 

(NxJFo = (N,),, = WEh c C(p) sin (y) 
p-1,3... 

(0 < x < a) 

fE44) 

(0 < x < a) 
C(m,n) sin (y)sin(y) 

(O<y<b) 
m=l,3... n=l,3... 

(E45) 

‘“y Jx=o = (NY 

N 

) = c&Eh r x=a c C(n) sin (y) (0 < y < a) 

n=l,3... (346) 
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(0 f x _< a> 
N = -aEh 

xy J(m,n) ~0.5 (?I ~0s (?I co < y < a) 
- - 

m=l,3... n=l,3... 
(E47) 

where G(m,n), C(m,n), and J(m,n) are known quantities, and given by 

the following equations: 

%-I Gfm,n) = cae~h 

4n2B2 = [mC(n) + nB2C(m)] + 4m[m2 + 2n2B2]B(n) 
z[m2 + n2B212 fl[m2 + n2B212 

n2B2[n2B2 + 2m21 _ lj _ Q2B2 

[m2+n2B212 (P2 + Q2B2) 
6 6 
fl nQ 

(E48) 

C(m,n) = & 

= t;h;) [m2(m2+2n2B2) _ ll + 4riBsB(m) (n2B2 + 2m2) 
2 222 (m +n B ) n [m2 + n2B212 

2 
+ 4m 

n[m2+n2B212 
[mC(n) + nES2C(m)l - P2 6 6 

(P~+Q~B~) mP nQ 
(E49) 

J(m,n) = & 

P&B 4m2nBC(n) 4mn2B3C(m) 
= (p2+Q2B2)s”psnQ - n[m2 + n2B212 - .[m2 + n2B2T 

+ 4m3B 
B(m) + 

4n3B3 
z[m2 + n2B2 I2 x[m2+n2B2 I2 

- B(n) (E50) 
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With B1; = .B,‘: = B,l” = 

(4), one obtains the 

plate: 

Bin (n odd) known, from the first 

following running tension between 

N w 
Nx(O,y) = -Eh L B(n) sin (-) a 

n=l,3... 

of equat?ons 

stiffeners and 

(E51) 

Numerical results for A = 1. - The numerical procedure and equations 

described above were applied to square plate subjected to a "pillow- 

shaped" temperature distribution (P = Q = 1) and having stiffener and 

plate cross sections corresponding to h = 1.0. The results obtained 

for the stiffener tensions and plate stresses are shown in dimensionless 

form in figure 16 for v = 0.3. 

Limiting case of large stiffener areas. - Still referring to the 

special case of symmetry with respect to plate centerlines and diagonals, 

the first-order perturbation solution corresponding to stiffener 

cross-sectional area large in comparison with plate cross-sectional 

area (h-0) will now be given. This solution is obtained by assuming 

that 

where 

C(n) = C(O) (n) + U(l)(n) 

(E52) 
B(n) = B(')(n) + U(')(n) 

“il 
C(n) = m 

BI; 
B(n) = a 

Substituting from equations (E52) into equation (E34'), the following 

.two equations are obtained from those terms which do not involve h and 

those which do invo'lve h, respectively: 
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1s - 2n2B2 f [p2+(2+v)n2B2] 

[p2 + n2B212 
1 B(')(n) 

p=1,3... 

PII +P2+(2+v)Q2B2] 
N 

= 'nQ 2 
2 

[P~+Q~B~] - " - 2nBpzl 3 c 
p[p2+(2+v)n2B21 C q 

[p2 + n2B212 
, . . . 

+2n2B2 C(')(n) f :~~~$~~ -2nB2 f p[n2B2-vp2]B(')(p) 

p=l,3... p=l,3.*. [p2 + n2B2 I2 

L.P 

(: L-6 np 

(E53) 

M 
(2(B2-v)B2 2n2B2 1 [p2 + (2+V)n*B2] ) B(')(n) 

[l + B212 
p=l,3... [p2 + n2B212 

M 
= -33$ 

c 
p[p2+(2+v)n B IC 2 2 (0) (P) + 2n2B2 ,(l) 

p=l,3... [p2 + n2B212 

M 
-2nB2 

Ix 
p[n2B2 - vp2] B +nJ 

(1 - cnp) (E54) 
p=1,3... [p2 + n2B212 

Similarly, substituting from equations (E52) into equation (E35'), one 

obtains 

C(O)(n) = vB(')(n) (n = 1, 3, . -., N) fW3) 

and 
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. ..- -- 

c(‘)(n) = SnQ $ ’ 
[p2+Q2B2 1 

f Jo’(n) n2B2 f 

p=l,3.*. 
Lp2 + i2B212 

M 

c 

3 
+ [ _ 1 B(')(P) 

M 

PI 
- nB2 

c(o)(p) 
n c 

p=1,3... (p2+n2B212 p=l, 3... [p2+n2B212 

+ vB (l)(n) 

The C(l) (n) and B(l) (n) are needed only in the combination C (l)(n) - vB(')(n) 

for later stress calculations; from the last equation, one obtains the 

following expression for the combination: 

C(')(n)-vB(')(n) = bnQ f ' + B(')(n) n2B2 f 1 

[P~+Q~B~ 1 p=l,3... [:p2 + n2B212 

M 
+ 

c [ 
PC(C)(P) 

p=l,3... p=l,3... 
[p2+n2B212 

-c(O)(n) f Lp2 +p12B212 (n = 1, 3, ---9 M) 

p=l,3... 
(E56) 

Equations (E53) through (E56) are to be solved for B (O)(n), C(O)(n), 

B(l)(n), and C(l) (n). Equations (E53) and (E55) must be solved simultaneously 

for the B(O) (n) and C(')(n). The procedure for solving simultaneously 

for B(')(n) and C(')(n) is the same as described previously for the case 

of any h. With B(')(n) and C(')(n) known, equations (E56) will furnish 
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the values of C (l)(n)-vB(l)(n) directly. By substituting from equations 

(E52) into equations (Bl6) and (Bl9) to (B25), and neglecting terms in 

h for the plate stresses, one obtains the following equations for 

calculating stresses: 

P,(Y) = P,(Y) = @WYh c N [C(')(n)-vB(')(n)] sin (=) a (0 < Y < a> 

'n=l,3... (E57) 
M 

P3(x) = P,(x) = BAIXX~ c 
[c(')(p) - vB(')(p)] sin (y) (0 < x < a) 

p=1,3... 

Nx = a@Eh 
m=l,3... n=l,3... 

M 

fNx) y=o = (Nxlyca = -Eh 1 C(O)(p) sin (5) 

p=l.,3... 

N = c&Eh 
Y 

f Cm sin (y) sin (y) 

m=l,3... n=l,3... 

(Ny)x=o = <“,)x=a = -m f C(O)(n) sin (y) (0 < Y < a) 
n=1,3... (E6?) 

N = -mEh xv 
f f 3, COS (Y) cos (?I 

-1 

m=l,3... n=l,3... 

(E58) 

(0 < x < a) 

(0 < Y < b) 

(E59) 

(0 < x < a) 

(E@) 

(0 < x < a) 

(0 < Y < a) 

(Em 

(0 5 x 5 a> 
(0 5 Y 5 4 

(E63) 

where -h, cm, and 5, are known quantities, and given by the 

following equations: 
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4n2B2 

x[m2 + n2B212 

2 (0) + 4nB B (m) 
2 

dm 

Lag + nB2C(0)(m)] + 4m[m2+2n2B2]B(')(n) 
7r[m2 + n2B212 

n2B2[n2B2 + 2m2] 22 
I 

Cm2 + n2B212 
ell- QB 

(P2 + Q2B2) 
6 6 
@ nQ 

m4 > 

C =- 
mn CLBEh 

_ 4mB(')(n) '(m2+2n2B2) - n2B2n Lrn 2 222 1l + 4nB2B(')(m) (n2B2 + 2m2) 

(m+nB ) al Cm2 + n2B212 

2 
+ km [mC(O)(n) + nB2C(0)(m)] - p2 

.[m2 + n2B212 ( p2+Q2B2 1 ‘@‘nQ 

w5 1 

: jtnn 
Jmn =cveEh 

P&B 66 - 4m2riK!(o)(n) 4mn2B3 C(')(m) 
= (P~+Q~B~) mP nQ z[m2 + n2B212 - .[m2 + n2B212 

+ 4m3B 4n3B3 

z[m2 + n2B212 
B(')(m) -I- 222 n[m2+ nB ) 

B(')(n) wa 

With ,the Bn known, from the first of equations (4), one obtains in 

a similar manner the following equation for the running tension between 

the rigid stiffener 'and plate edge at x = 0: 
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N 

Nx(O,y) = cS3Eh c B(')(n) sin (nny/b) (O<Y-) 
n=1,3... 

W7) 

And from first two of equations (Eli), one obtains the end tensions 

in x-wise direction of stiffener at y=O as follows: 

N 

P3(0) = P3(a) = -o0AEh 1 kB (O)(n) (Eli") 

n=l,3... 

Numerical results for large stiffener areas. - The result for 

A+0 for a square plate (B=l) with all stiffeners identical subjected 

to a "pillow-shaped" temperature distribution is shown in dimensionless 

form in figure 17 for Poisson's ratio V equals to 0.3. In general, 

stresses were computed at x/a and y/b interval of 0.1. 
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Figure 2. Notation for thermal strains. 

188 

. 



P,(Y) 

189 

t 

1 

” Y 
N 

Y 

T 
P,(Y) 

I 

I X 
I 4 + 

1, 
I 

P,(x) 

Figure 3. Notation for stiffener and plate forces. 

e,(x) 

q, I..\ J! -1 --I-ILI-!I, 

(a) Stiffener shape pre- (b) Stiffener shape pre- (c) Stiffener shape pre- 
scribed along the scribed along the scribed alow all 
edge x = 0. edges x = 0, a. four edges. 

Figure 4. Structure and prescribed loadings considered in present paper. 
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Figure 6. Plate stresses and stiffener tensions for the case of 
one edge held straight, pillow-shaped temperature 
dietribution, h = 2.0, and v = 0.3. 
(M - 3% N - 59) 
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Figure 7. Plate stresses and stiffener tensions for the case 
of one edge held straight, pillow-shaped temperature 
distribution, A = 1.0 and v = 0.3. (Dashed curves, 
from fig. 5c of ref. 1, are for the case of all edge 
stiffeners perfectly flexible.) 
(M = 3% N = 59) 
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Figure 7. (continued) 
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Figure 8. Plate str'esses and stiffener tensions for the.case of 
one edge held straight, pillow-shaped temperature 
distribution, h-+0, and v = 0.3. (Dashed curves, from 
fig. 5a of ref. 1, are for the case of all edge stiffeners 
perfectly .flexible.) (M = 79, N = 79) 
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Figure 9. Plate stresses and stiffener tensions for the case of 
one edge held straight, pillow-shaped temperature 
distribution, h-0, and v = 0. (M = 79, N = 79). 
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Figure 10. Plate stresses and stiffener tensions of the case of two 
opposite edges held straight, pillow-shaped temperature 
distribution, A = 2.0, and V = 0.3. t(M = 59, N = 59) 
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Figure 11. Plate stresses and stiffener tensions for the case of two 
opposite edges held straight, pillow-shaped temperature 
distribution, A = 1.0, and v = 0.3. (Dashed curves, from 
fig. 5c of ref. 1, are for the case of all edge stiffeners 
perfectly flexible.) (M = 59, N = 59) 
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Figure 11. (continued) 
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Figure 13. (continued) 
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Figure 14. Plate stresses and stiffener tensions for the case 
of two opposite edges held straight, stretching forces 
applied normal to the straight edges, A = 1.0, and 
v = 0.3. (M = 59, N = 59) 
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Figure 14. (continued) 
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Figure 15. Plate stresses and stiffener tensions for the case of two 
opposite edges held straight, stretching forced applied 
normal to the straight edges, A-0, and v = 0.3. 
(M = 59, N = 59) 
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Figure 1.6. Plate stresses and stiffener tensions for the case of all 
four edges held straight, pillow-shaped temperature 
distribution, A = 1.0, and V = 0.3. (Dashed curves, from 
fig. 5c of ref. 1, are for the case of all edge stiffeners 
perfectly flexible.) (M = 59, N = 59) 
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Figure 16. (continued) 
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Figure 17. Plate stresses and stiffener tensions for the case of all four 
edges held straight, pillow-shaped temperature distribution, 
A-0, and v = 0.3. (Dashed curves, from fig. 5a of'ref. 1, are 
for the case of all edge stiffeners perfectly flexible.) 
(M = 59, N =59). 
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Figure 18. Typ es of structure to which the present analysis and 
references 1, 2 and 3 may be applicable. 
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Figure 19. Results from figure 11 compared with those obtained when 
overall expansion in x-direction is completely prevented 
by the external constraining forces Tl=T2=-0.4439 M. 
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